Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Comput Biol Chem. 2021 Oct;94:107560. doi: 10.1016/j.compbiolchem.2021.107560. Epub 2021 Aug 16.
Interleukin 33 (IL-33) is the latest member of the IL-1 cytokine family, which plays both pro - and anti-inflammatory functions. Numerous Single-nucleotide polymorphisms (SNPs) in the IL-33 gene have been recognized to be associated with a vast variety of inflammatory disorders. SNPs associated studies have become a crucial approach in uncovering the genetic background of human diseases. However, distinguishing the functional SNPs in a disease-related gene from a pool of both functional and neutral SNPs is a major challenge and needs multiple experiments of hundreds or thousands of SNPs in candidate genes. This study aimed to identify the possible deleterious SNPs in the IL-33 gene using bioinformatics predictive tools. The nonsynonymous SNPs (nsSNPs) were analyzed by SIFT, PolyPhen, PROVEAN, SNP&GO, MutPred, SNAP, PhD SNP, and I-Mutant tools. The Non-coding SNPs (ncSNPs) were also analyzed by SNPinfo and RegulomeDB tools. In conclusion, our in-silico analysis predicted 5 nsSNPs and 22 ncSNPs as potential candidates in the IL-33 gene for future genetic association studies.
白细胞介素 33(IL-33)是白细胞介素 1 细胞因子家族的最新成员,具有促炎和抗炎双重功能。大量研究发现白细胞介素 33 基因中的单核苷酸多态性(SNP)与多种炎症性疾病有关。SNP 关联研究已成为揭示人类疾病遗传背景的重要方法。然而,从候选基因中众多具有功能和中性的 SNP 中区分出与疾病相关的基因中的功能性 SNP 是一个主要的挑战,需要对数百或数千个候选 SNP 进行多次实验。本研究旨在使用生物信息学预测工具鉴定白细胞介素 33 基因中的可能有害 SNP。非同义 SNP(nsSNP)通过 SIFT、PolyPhen、PROVEAN、SNP&GO、MutPred、SNAP、PhD SNP 和 I-Mutant 工具进行分析。非编码 SNP(ncSNP)也通过 SNPinfo 和 RegulomeDB 工具进行分析。总之,我们的计算机分析预测白细胞介素 33 基因中有 5 个 nsSNP 和 22 个 ncSNP 可能是未来遗传关联研究的候选基因。