Suppr超能文献

了解切萨皮克湾下游玛加利弗藻赤潮的控制因素。

Understanding controls on Margalefidinium polykrikoides blooms in the lower Chesapeake Bay.

机构信息

Center for Coastal Physical Oceanography, Old Dominion University, Norfolk 23508, VA, USA.

Center for Coastal Physical Oceanography, Old Dominion University, Norfolk 23508, VA, USA.

出版信息

Harmful Algae. 2021 Jul;107:102064. doi: 10.1016/j.hal.2021.102064. Epub 2021 Jun 19.

Abstract

A time-dependent model of Margalefidinium polykrikoides, a mixotrophic dinoflagellate, cell growth was implemented to assess controls on blooms in the Lafayette River, a shallow, tidal sub-tributary of the lower Chesapeake Bay. Simulated cell growth included autotrophic and heterotrophic contributions. Autotrophic cell growth with no nutrient limitation resulted in a bloom but produced chlorophyll concentrations that were 45% less than observed bloom concentrations (~80 mg Chl m vs. 145 mg Chl m) and a bloom progression that did not match observations. Excystment (cyst germination) was important for bloom initiation, but did not influence the development of algal biomass or bloom duration. Encystment (cyst formation) resulted in small losses of biomass throughout the bloom but similarly, did not influence M. polykrikoides cell density or the duration of blooms. In contrast, the degree of heterotrophy significantly impacted cell densities achieved and bloom duration. When heterotrophy contributed a constant 30% to cell growth, and dissolved inorganic nitrogen was not limiting, simulated chlorophyll concentrations were within those observed during blooms (maximum ~140 mg Chl m). However, nitrogen limitation quenched the maximum chlorophyll concentration by a factor of three. Specifying heterotrophy as an increasing function of nutrient limitation, allowing it to contribute up to 50% and 70% of total growth, resulted in simulated maximum chlorophyll concentrations of 90 mg Chl m and 180 mg Chl m, respectively. This suggested that blooms of M. polykrikoides in the Lafayette River are fortified and maintained by substantial heterotrophic nutritional inputs. The timing and progression of the simulated bloom was controlled by the temperature range, 23 °C to 28 °C, that supports M. polykrikoides growth. Temperature increases of 0.5 °C and 1.0 °C, consistent with current warming trends in the lower Chesapeake Bay due to climate change, shifted the timing of bloom initiation to be earlier and extended the duration of blooms; maximum bloom magnitude was reduced by 50% and 65%, respectively. Warming by 5 °C suppressed the summer bloom. The simulations suggested that the timing of M. polykrikoides blooms in the Lafayette River is controlled by temperature and the bloom magnitude is determined by trade-offs between the severity of nutrient limitation and the relative contribution of mixotrophy to cell growth.

摘要

Margalefidinium polykrikoides 是一种混合营养型甲藻,本研究建立了其依时生长模型,以评估该藻在拉菲特河(Lafayette River)水华形成中的作用。拉菲特河是切萨皮克湾(Chesapeake Bay)下游一条潮汐支流,水体较浅。模型模拟包括自养和异养生长。在无营养盐限制条件下,自养生长可导致水华发生,但形成的叶绿素浓度比实际水华观测值低 45%(~80mgChl m 比 145mgChl m),水华形成进程也与实际观测结果不匹配。出囊(孢囊萌发)对水华起始很重要,但对藻细胞生物量的增长或水华持续时间无影响。囊形成(孢囊形成)会导致整个水华过程中生物量略有损失,但同样不会影响 M. polykrikoides 细胞密度或水华持续时间。相比之下,异养作用的程度对细胞密度和水华持续时间有显著影响。当异养作用对细胞生长的贡献恒定时(30%),且溶解态无机氮不限制时,模拟的叶绿素浓度与水华期间的观测值相当(最大约 140mgChl m)。然而,氮限制会使最大叶绿素浓度降低三分之一。将异养作用指定为营养限制的递增函数,允许其贡献总生长的 50%和 70%,则模拟的最大叶绿素浓度分别为 90mgChl m 和 180mgChl m。这表明,拉菲特河的 M. polykrikoides 水华是由大量异养营养输入所支持和维持的。模拟水华的时间和进程受支持 M. polykrikoides 生长的温度范围(23°C 至 28°C)控制。温度升高 0.5°C 和 1.0°C,与由于气候变化导致的切萨皮克湾下游当前变暖趋势一致,会使水华起始时间提前,并延长水华持续时间;最大水华规模分别降低 50%和 65%。升温 5°C 会抑制夏季水华。模拟结果表明,拉菲特河水华发生时间由温度控制,水华规模由营养限制的严重程度和混合营养对细胞生长的相对贡献之间的权衡决定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验