College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China.
ECOSYM (Ecologie des systèmes marins côtiers)- UMR 5119, Universite de Montpellier, Montpellier, France.
Microbiol Spectr. 2024 May 2;12(5):e0404823. doi: 10.1128/spectrum.04048-23. Epub 2024 Apr 12.
Phytoplankton are important drivers of aquatic ecosystem function and environmental health. Their community compositions and distributions are directly impacted by environmental processes and human activities, including in the largest estuary in North America, the Chesapeake Bay. It is crucial to uncover how planktonic eukaryotes play fundamental roles as primary producers and trophic links and sustain estuarine ecosystems. In this study, we investigated the detailed community structure and spatiotemporal variations of planktonic eukaryotes in the Chesapeake Bay across space and time for three consecutive years. A clear seasonal and spatial shift of total, abundant, and rare planktonic eukaryotes was evident, and the pattern recurred interannually. Multiple harmful algal species have been identified in the Bay with varied distribution patterns, such as sp., etc. Compared to abundant taxa, rare subcommunities were more sensitive to environmental disturbance in terms of richness, diversity, and distribution. The combined effects of temporal variation (13.3%), nutrient availability (10.0%), and spatial gradients (8.8%) structured the distribution of eukaryotic microbial communities in the Bay. Similar spatiotemporal patterns between planktonic prokaryotes and eukaryotes suggest common mechanisms of adjustment, replacement, and species interaction for planktonic microbiomes under strong estuarine gradients. To our best knowledge, this work represents the first systematic study on planktonic eukaryotes in the Bay. A comprehensive view of the distribution of planktonic microbiomes and their interactions with environmental processes is critical in understanding the underlying microbial mechanisms involved in maintaining the stability, function, and environmental health of estuarine ecosystems.
Deep sequencing analysis of planktonic eukaryotes in the Chesapeake Bay reveals high community diversity with many newly recognized phytoplankton taxa. The Chesapeake Bay planktonic eukaryotes show distinct seasonal and spatial variability, with recurring annual patterns of total, abundant, and rare groups. Rare taxa mainly contribute to eukaryotic diversity compared to abundant groups, and they are more sensitive to spatiotemporal variations and environmental filtering. Temporal variations, nutrient availability, and spatial gradients significantly affect the distribution of eukaryotic microbial communities. Similar spatiotemporal patterns in prokaryotes and eukaryotes suggest common mechanisms of adjustment, substitution, and species interactions in planktonic microbiomes under strong estuarine gradients. Interannually recurring patterns demonstrate that diverse eukaryotic taxa have well adapted to the estuarine environment with a long residence time. Further investigations of how human activities impact estuarine planktonic eukaryotes are critical in understanding their essential ecosystem roles and in maintaining environmental safety and public health.
浮游植物是水生生态系统功能和环境健康的重要驱动因素。它们的群落组成和分布直接受到环境过程和人类活动的影响,包括在北美最大的河口切萨皮克湾。揭示浮游真核生物作为初级生产者和营养联系的基本作用以及维持河口生态系统的方式至关重要。在这项研究中,我们调查了切萨皮克湾浮游真核生物的详细群落结构和时空变化,跨越了三年的时间和空间。浮游真核生物的总数量、丰富度和稀有度在空间和时间上都有明显的季节性和空间变化,而且这种模式每年都会重现。在海湾中已经鉴定出多种有害藻类物种,它们的分布模式各不相同,例如 sp. 等。与丰富的分类群相比,稀有亚群落在丰富度、多样性和分布方面对环境干扰更为敏感。时间变化(13.3%)、养分可用性(10.0%)和空间梯度(8.8%)共同影响了真核微生物群落在海湾中的分布。浮游原核生物和真核生物之间存在相似的时空模式,这表明在强烈的河口梯度下,浮游微生物组的调整、替代和物种相互作用存在共同机制。据我们所知,这是该湾浮游真核生物的首次系统研究。全面了解浮游微生物组的分布及其与环境过程的相互作用,对于理解维持河口生态系统稳定性、功能和环境健康的潜在微生物机制至关重要。
对切萨皮克湾浮游真核生物的深度测序分析显示,其群落多样性很高,有许多新发现的浮游植物分类群。切萨皮克湾浮游真核生物表现出明显的季节性和空间变异性,总数量、丰富度和稀有组呈现出周期性的年度模式。与丰富的组相比,稀有组主要对真核生物多样性有贡献,并且它们对时空变化和环境过滤更为敏感。时间变化、养分可用性和空间梯度对真核微生物群落的分布有显著影响。原核生物和真核生物之间相似的时空模式表明,在强烈的河口梯度下,浮游微生物组的调整、替代和物种相互作用存在共同机制。年度重现模式表明,多样化的真核生物类群已经很好地适应了具有长居留时间的河口环境。进一步研究人类活动如何影响河口浮游真核生物,对于理解它们在生态系统中的重要作用以及维护环境安全和公共健康至关重要。