Suppr超能文献

基于递归神经网络的 PubMed 中罕见病流行病学研究自动识别

Recurrent Neural Networks to Automatically Identify Rare Disease Epidemiologic Studies from PubMed.

机构信息

Stanford University, Stanford, CA.

Office of Rare Disease Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Bethesda, MD.

出版信息

AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:325-334. eCollection 2021.

Abstract

Rare diseases affect between 25 and 30 million people in the United States, and understanding their epidemiology is critical to focusing research efforts. However, little is known about the prevalence of many rare diseases. Given a lack of automated tools, current methods to identify and collect epidemiological data are managed through manual curation. To accelerate this process systematically, we developed a novel predictive model to programmatically identify epidemiologic studies on rare diseases from PubMed. A long short-term memory recurrent neural network was developed to predict whether a PubMed abstract represents an epidemiologic study. Our model performed well on our validation set (precision = 0.846, recall = 0.937, AUC = 0.967), and obtained satisfying results on the test set. This model thus shows promise to accelerate the pace of epidemiologic data curation in rare diseases and could be extended for use in other types of studies and in other disease domains.

摘要

在美国,罕见病影响着 2500 万至 3000 万人,了解其流行病学特征对于集中研究工作至关重要。然而,许多罕见病的患病率知之甚少。由于缺乏自动化工具,目前识别和收集流行病学数据的方法是通过手动策展来管理的。为了系统地加速这一过程,我们开发了一种新的预测模型,以便从 PubMed 中自动识别罕见病的流行病学研究。我们开发了一个长短期记忆递归神经网络来预测 PubMed 摘要是否代表一项流行病学研究。我们的模型在验证集上表现良好(精度=0.846,召回率=0.937,AUC=0.967),在测试集上也取得了令人满意的结果。因此,该模型有望加速罕见病流行病学数据策展的步伐,并且可以扩展用于其他类型的研究和其他疾病领域。

相似文献

3
Epidemiologic Research of Rare Cancers: Trends, Resources, and Challenges.罕见癌症的流行病学研究:趋势、资源和挑战。
Cancer Epidemiol Biomarkers Prev. 2021 Jul;30(7):1305-1311. doi: 10.1158/1055-9965.EPI-20-1796. Epub 2021 Apr 1.
8
[Epidemiologic challenges in rare diseases].[罕见病的流行病学挑战]
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2008 May;51(5):483-90. doi: 10.1007/s00103-008-0533-6.

本文引用的文献

2
Voxelotor: A Novel Treatment for Sickle Cell Disease.伏打诺他:治疗镰状细胞病的新方法。
Ann Pharmacother. 2021 Feb;55(2):240-245. doi: 10.1177/1060028020943059. Epub 2020 Jul 16.
5
Advances in Sickle Cell Disease Treatments.镰状细胞病治疗进展。
Curr Med Chem. 2021;28(10):2008-2032. doi: 10.2174/0929867327666200610175400.
7
Voxelotor for the Treatment of Sickle Cell Disease.伏打络索治疗镰状细胞病。
Nurs Womens Health. 2020 Jun;24(3):233-237. doi: 10.1016/j.nwh.2020.03.003. Epub 2020 May 6.
9
Survey of Ehlers-Danlos Patients' ophthalmic surgery experiences.Ehlers-Danlos 患者眼科手术体验调查。
Mol Genet Genomic Med. 2020 Apr;8(4):e1155. doi: 10.1002/mgg3.1155. Epub 2020 Jan 27.
10
Arterial Elasticity in Ehlers-Danlos Syndromes.埃勒斯-当洛斯综合征的动脉弹性。
Genes (Basel). 2020 Jan 4;11(1):55. doi: 10.3390/genes11010055.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验