Mayerthaler Florian, Feldberg Anna-Lena, Alfermann Jonas, Sun Xun, Steinchen Wieland, Yang Haw, Mootz Henning D
Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster Münster Germany
Department of Chemistry, Princeton University Princeton New Jersey USA.
RSC Chem Biol. 2021 Mar 4;2(3):843-854. doi: 10.1039/d0cb00220h. eCollection 2021 Jun 1.
Nonribosomal peptide synthetases (NRPSs) are multifunctional megaenzymes that govern the stepwise biosynthesis of pharmaceutically important peptides. In an ATP-dependent assembly-line mechanism dedicated domains are responsible for each catalytic step. Crystal structures have provided insight into several conformations of interacting domains. However, the complete picture in solution of how domain dynamics and the timing of conformational changes effect a directional biosynthesis remains only poorly understood and will be important for the efficient reprogramming of NRPSs. Here we dissect the multiple conformational changes associated with the adenylation and thiolation reactions of the aminoacylation pathway under catalytic conditions. We used pyrophosphate (PP ) to biochemically drive the conformational changes backward and forward while performing an online monitoring with a Förster resonance energy transfer (FRET) didomain sensor, consisting of adenylation (A) and peptidyl-carrier protein (PCP) domains. Notably, we found aminoacyl thioester formation to efficiently occur in the presence of PP even at millimolar concentrations, despite the chemically and conformationally reversing effect of this metabolite and by-product. This finding settles conflicting reports and explains why intracellular PP concentrations do not impair NRP biosynthesis. A conserved amino acid was identified to be important for the mechanism under these conditions. FRET time-course analyses revealed that the directionality of the aminoacylation catalysis is correlated with conformational kinetics. Complemented by equilibrium hydrogen-deuterium exchange (HDX) analyses, our data uncovered the existence of at least one new intermediary conformation that is associated with the rate-determining step. We propose an expanded model of conformational changes in the NRPS aminoacylation pathway.
非核糖体肽合成酶(NRPSs)是一类多功能的巨型酶,负责药学上重要肽段的逐步生物合成。在一种依赖ATP的装配线机制中,特定的结构域负责每个催化步骤。晶体结构已为相互作用结构域的几种构象提供了见解。然而,关于结构域动力学以及构象变化的时间如何影响定向生物合成在溶液中的完整情况仍知之甚少,而这对于NRPSs的有效重编程将是重要的。在这里,我们剖析了在催化条件下与氨酰化途径的腺苷化和硫醇化反应相关的多种构象变化。我们使用焦磷酸(PP)在进行由腺苷化(A)和肽基载体蛋白(PCP)结构域组成的Förster共振能量转移(FRET)双结构域传感器在线监测时,以生化方式驱动构象变化的正向和反向。值得注意的是,我们发现即使在毫摩尔浓度下,在PP存在的情况下氨酰硫酯仍能有效形成,尽管这种代谢物和副产物具有化学和构象上的反向作用。这一发现解决了相互矛盾的报道,并解释了为什么细胞内PP浓度不会损害NRP生物合成。在这些条件下,一个保守氨基酸被确定对该机制很重要。FRET时间进程分析表明,氨酰化催化的方向性与构象动力学相关。通过平衡氢-氘交换(HDX)分析的补充,我们的数据揭示了至少一种与速率决定步骤相关的新的中间构象的存在。我们提出了NRPS氨酰化途径构象变化的扩展模型。