Suppr超能文献

环动态在 II 型 NRPS 生物分子识别中的重要作用。

Essential Role of Loop Dynamics in Type II NRPS Biomolecular Recognition.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States.

出版信息

ACS Chem Biol. 2022 Oct 21;17(10):2890-2898. doi: 10.1021/acschembio.2c00523. Epub 2022 Sep 29.

Abstract

Non-ribosomal peptides play a critical role in the clinic as therapeutic agents. To access more chemically diverse therapeutics, non-ribosomal peptide synthetases (NRPSs) have been targeted for engineering through combinatorial biosynthesis; however, this has been met with limited success in part due to the lack of proper protein-protein interactions between non-cognate proteins. Herein, we report our use of chemical biology to enable X-ray crystallography, molecular dynamics (MD) simulations, and biochemical studies to elucidate binding specificities between peptidyl carrier proteins (PCPs) and adenylation (A) domains. Specifically, we determined X-ray crystal structures of a type II PCP crosslinked to its cognate A domain, PigG and PigI, and of PigG crosslinked to a non-cognate PigI homologue, PltF. The crosslinked PCP-A domain structures possess large protein-protein interfaces that predominantly feature hydrophobic interactions, with specific electrostatic interactions that orient the substrate for active site delivery. MD simulations of the PCP-A domain complexes and unbound PCP structures provide a dynamical evaluation of the transient interactions formed at PCP-A domain interfaces, which confirm the previously hypothesized role of a PCP loop as a crucial recognition element. Finally, we demonstrate that the interfacial interactions at the PCP loop 1 region can be modified to control PCP binding specificity through gain-of-function mutations. This work suggests that loop conformational preferences and dynamism account for improved shape complementary in the PCP-A domain interactions. Ultimately, these studies show how crystallographic, biochemical, and computational methods can be used to rationally re-engineer NRPSs for non-cognate interactions.

摘要

非核糖体肽在临床上作为治疗剂起着至关重要的作用。为了获得更多化学多样性的治疗药物,人们通过组合生物合成针对非核糖体肽合成酶 (NRPSs) 进行了工程改造;然而,由于非同源蛋白之间缺乏适当的蛋白质-蛋白质相互作用,这方面的工作仅取得了有限的成功。在此,我们报告了我们使用化学生物学来实现 X 射线晶体学、分子动力学 (MD) 模拟和生化研究,以阐明肽酰载体蛋白 (PCP) 和腺苷酰化 (A) 结构域之间的结合特异性。具体来说,我们确定了与同源 A 结构域 PigG 和 PigI 交联的 II 型 PCP 以及与非同源 PigI 同源物 PltF 交联的 PigG 的 X 射线晶体结构。交联的 PCP-A 结构域结构具有大的蛋白质-蛋白质界面,主要由疏水相互作用组成,具有特定的静电相互作用,使底物定向进入活性位点。PCP-A 结构域复合物和未结合 PCP 结构的 MD 模拟提供了对 PCP-A 结构域界面形成的瞬态相互作用的动态评估,这证实了先前假设的 PCP 环作为关键识别元件的作用。最后,我们证明可以通过功能获得突变来修饰 PCP 环 1 区域的界面相互作用,以控制 PCP 结合特异性。这项工作表明,环构象偏好和动态性解释了 PCP-A 结构域相互作用中改善的形状互补性。最终,这些研究表明了如何使用晶体学、生化和计算方法来合理地重新设计 NRPS 以实现非同源相互作用。

相似文献

1
Essential Role of Loop Dynamics in Type II NRPS Biomolecular Recognition.
ACS Chem Biol. 2022 Oct 21;17(10):2890-2898. doi: 10.1021/acschembio.2c00523. Epub 2022 Sep 29.
2
Manipulating Protein-Protein Interactions in Nonribosomal Peptide Synthetase Type II Peptidyl Carrier Proteins.
Biochemistry. 2017 Oct 10;56(40):5269-5273. doi: 10.1021/acs.biochem.7b00884. Epub 2017 Oct 2.
4
Carrier Protein Interaction with Competing Adenylation and Epimerization Domains in a Nonribosomal Peptide Synthetase Analyzed by FRET.
Angew Chem Int Ed Engl. 2024 May 13;63(20):e202317753. doi: 10.1002/anie.202317753. Epub 2024 Apr 9.
6
New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis.
Angew Chem Int Ed Engl. 2016 Aug 16;55(34):9834-40. doi: 10.1002/anie.201602614. Epub 2016 Jul 20.
9
Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases.
Structure. 2000 Apr 15;8(4):407-18. doi: 10.1016/s0969-2126(00)00120-9.

引用本文的文献

2
Enzymatic synthesis of azide by a promiscuous N-nitrosylase.
Nat Chem. 2024 Dec;16(12):2066-2075. doi: 10.1038/s41557-024-01646-2. Epub 2024 Sep 27.
4
Interface Engineering of Carrier-Protein-Dependent Metabolic Pathways.
ACS Chem Biol. 2023 Sep 15;18(9):2014-2022. doi: 10.1021/acschembio.3c00238. Epub 2023 Sep 6.

本文引用的文献

1
Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains.
Synth Syst Biotechnol. 2022 Feb 16;7(2):677-688. doi: 10.1016/j.synbio.2022.02.006. eCollection 2022 Jun.
2
Resolving the Hydride Transfer Pathway in Oxidative Conversion of Proline to Pyrrole.
Biochemistry. 2022 Feb 1;61(3):206-215. doi: 10.1021/acs.biochem.1c00741. Epub 2022 Jan 24.
3
Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases.
RSC Chem Biol. 2021 Mar 4;2(3):843-854. doi: 10.1039/d0cb00220h. eCollection 2021 Jun 1.
4
Accurate prediction of protein structures and interactions using a three-track neural network.
Science. 2021 Aug 20;373(6557):871-876. doi: 10.1126/science.abj8754. Epub 2021 Jul 15.
5
Dynamic visualization of type II peptidyl carrier protein recognition in pyoluteorin biosynthesis.
RSC Chem Biol. 2020 Apr 1;1(1):8-12. doi: 10.1039/c9cb00015a. Epub 2020 Mar 24.
6
Interfacial plasticity facilitates high reaction rate of FAS malonyl-CoA:ACP transacylase, FabD.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24224-24233. doi: 10.1073/pnas.2009805117. Epub 2020 Sep 14.
7
Activity Mapping the Acyl Carrier Protein: Elongating Ketosynthase Interaction in Fatty Acid Biosynthesis.
Biochemistry. 2020 Sep 29;59(38):3626-3638. doi: 10.1021/acs.biochem.0c00605. Epub 2020 Sep 11.
8
Structural Characterization of Complex of Adenylation Domain and Carrier Protein by Using Pantetheine Cross-Linking Probe.
ACS Chem Biol. 2020 Jul 17;15(7):1808-1812. doi: 10.1021/acschembio.0c00403. Epub 2020 Jul 7.
9
Gating mechanism of elongating β-ketoacyl-ACP synthases.
Nat Commun. 2020 Apr 7;11(1):1727. doi: 10.1038/s41467-020-15455-x.
10
Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019.
J Nat Prod. 2020 Mar 27;83(3):770-803. doi: 10.1021/acs.jnatprod.9b01285. Epub 2020 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验