Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0657, United States.
ACS Chem Biol. 2022 Oct 21;17(10):2890-2898. doi: 10.1021/acschembio.2c00523. Epub 2022 Sep 29.
Non-ribosomal peptides play a critical role in the clinic as therapeutic agents. To access more chemically diverse therapeutics, non-ribosomal peptide synthetases (NRPSs) have been targeted for engineering through combinatorial biosynthesis; however, this has been met with limited success in part due to the lack of proper protein-protein interactions between non-cognate proteins. Herein, we report our use of chemical biology to enable X-ray crystallography, molecular dynamics (MD) simulations, and biochemical studies to elucidate binding specificities between peptidyl carrier proteins (PCPs) and adenylation (A) domains. Specifically, we determined X-ray crystal structures of a type II PCP crosslinked to its cognate A domain, PigG and PigI, and of PigG crosslinked to a non-cognate PigI homologue, PltF. The crosslinked PCP-A domain structures possess large protein-protein interfaces that predominantly feature hydrophobic interactions, with specific electrostatic interactions that orient the substrate for active site delivery. MD simulations of the PCP-A domain complexes and unbound PCP structures provide a dynamical evaluation of the transient interactions formed at PCP-A domain interfaces, which confirm the previously hypothesized role of a PCP loop as a crucial recognition element. Finally, we demonstrate that the interfacial interactions at the PCP loop 1 region can be modified to control PCP binding specificity through gain-of-function mutations. This work suggests that loop conformational preferences and dynamism account for improved shape complementary in the PCP-A domain interactions. Ultimately, these studies show how crystallographic, biochemical, and computational methods can be used to rationally re-engineer NRPSs for non-cognate interactions.
非核糖体肽在临床上作为治疗剂起着至关重要的作用。为了获得更多化学多样性的治疗药物,人们通过组合生物合成针对非核糖体肽合成酶 (NRPSs) 进行了工程改造;然而,由于非同源蛋白之间缺乏适当的蛋白质-蛋白质相互作用,这方面的工作仅取得了有限的成功。在此,我们报告了我们使用化学生物学来实现 X 射线晶体学、分子动力学 (MD) 模拟和生化研究,以阐明肽酰载体蛋白 (PCP) 和腺苷酰化 (A) 结构域之间的结合特异性。具体来说,我们确定了与同源 A 结构域 PigG 和 PigI 交联的 II 型 PCP 以及与非同源 PigI 同源物 PltF 交联的 PigG 的 X 射线晶体结构。交联的 PCP-A 结构域结构具有大的蛋白质-蛋白质界面,主要由疏水相互作用组成,具有特定的静电相互作用,使底物定向进入活性位点。PCP-A 结构域复合物和未结合 PCP 结构的 MD 模拟提供了对 PCP-A 结构域界面形成的瞬态相互作用的动态评估,这证实了先前假设的 PCP 环作为关键识别元件的作用。最后,我们证明可以通过功能获得突变来修饰 PCP 环 1 区域的界面相互作用,以控制 PCP 结合特异性。这项工作表明,环构象偏好和动态性解释了 PCP-A 结构域相互作用中改善的形状互补性。最终,这些研究表明了如何使用晶体学、生化和计算方法来合理地重新设计 NRPS 以实现非同源相互作用。