Suppr超能文献

基于药物重定位与MM/PBSA的验证策略用于MEK抑制剂筛选

Drug repurposing combined with MM/PBSA based validation strategies towards MEK inhibitors screening.

作者信息

Thirunavukkarasu Muthu Kumar, Karuppasamy Ramanathan

机构信息

Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

出版信息

J Biomol Struct Dyn. 2022;40(22):12392-12403. doi: 10.1080/07391102.2021.1970629. Epub 2021 Aug 30.

Abstract

Emergence of oncogenic mutations in the MAPK pathway gaining more impact in the recent years. Importantly, MEK is a core element of this pathway as it is easy to inhibit and is a gatekeeper of multiple malignancies. Therefore, we performed strategy to screen repurposed candidate for MEK protein using a library of 11,808 compounds from different clusters in the DrugBank database. Glide docking, Prime-MM/GBSA and QikProp analysis were implemented to retrieve the hits with high precision. The stability of the binding mode and binding affinity of the resultant hit were explored using molecular dynamic simulations and MM/PBSA approach. The results highlight that Nebivolol (DB04861) not only achieved a stable conformation in the MEK binding pocket but also displayed highest binding affinity than the other molecules investigated in our study. Taken together, we hypothesized that Nebivolol is an excellent candidate for the inhibition of MEK in NSCLC patients in future.Communicated by Ramaswamy H. Sarma.

摘要

近年来,丝裂原活化蛋白激酶(MAPK)途径中致癌突变的出现产生了更大影响。重要的是,丝裂原活化蛋白激酶激酶(MEK)是该途径的核心元件,因为它易于抑制且是多种恶性肿瘤的守门人。因此,我们采用一种策略,使用来自药物银行数据库中不同类别的11808种化合物库筛选MEK蛋白的重新利用候选物。实施了Glide对接、Prime-MM/GBSA和QikProp分析以高精度检索命中物。使用分子动力学模拟和MM/PBSA方法探索了所得命中物的结合模式稳定性和结合亲和力。结果表明,奈必洛尔(DB04861)不仅在MEK结合口袋中实现了稳定构象,而且与我们研究中调查的其他分子相比显示出最高的结合亲和力。综上所述,我们推测奈必洛尔未来是抑制非小细胞肺癌(NSCLC)患者MEK的优秀候选物。由拉马斯瓦米·H·萨尔马传达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验