Suppr超能文献

序贯虚拟筛选与机器学习策略相结合,发现针对非小细胞肺癌的精准药物。

Sequential virtual screening collaborated with machine-learning strategies for the discovery of precise medicine against non-small cell lung cancer.

机构信息

Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

出版信息

J Biomol Struct Dyn. 2024 Jan-Feb;42(2):615-628. doi: 10.1080/07391102.2023.2194994. Epub 2023 Mar 30.

Abstract

Dysregulation of MAPK pathway receptors are crucial in causing uncontrolled cell proliferation in many cancer types including non-small cell lung cancer. Due to the complications in targeting the upstream components, MEK is an appealing target to diminish this pathway activity. Hence, we have aimed to discover potent MEK inhibitors by integrating virtual screening and machine learning-based strategies. Preliminary screening was conducted on 11,808 compounds using the cavity-based pharmacophore model AADDRRR. Further, seven ML models were accessed to predict the MEK active compounds using six molecular representations. The LGB model with morgan2 fingerprints surpasses other models ensuing 0.92 accuracy and 0.83 MCC value versus test set and 0.85 accuracy and 0.70 MCC value with external set. Further, the binding ability of screened hits were examined using glide XP docking and prime-MM/GBSA calculations. Note that we have utilized three ML-based scoring functions to predict the various biological properties of the compounds. The two hit compounds such as DB06920 and DB08010 resulted excellent binding mechanism with acceptable toxicity properties against MEK. Further, 200 ns of MD simulation combined with MM-GBSA/PBSA calculations confirms that DB06920 may have stable binding conformations with MEK thus step forwarded to the experimental studies in the near future.Communicated by Ramaswamy H. Sarma.

摘要

MAPK 通路受体的失调在许多癌症类型中(包括非小细胞肺癌)导致不受控制的细胞增殖中起着至关重要的作用。由于靶向上游成分的复杂性,MEK 是减少该途径活性的有吸引力的靶标。因此,我们旨在通过整合虚拟筛选和基于机器学习的策略来发现有效的 MEK 抑制剂。使用基于腔的药效团模型 AADDRRR 对 11808 种化合物进行了初步筛选。此外,还使用六种分子表示法访问了七个 ML 模型来预测 MEK 活性化合物。LGB 模型与 morgan2 指纹超越了其他模型,在测试集上产生了 0.92 的准确性和 0.83 的 MCC 值,在外集上产生了 0.85 的准确性和 0.70 的 MCC 值。此外,还使用 glide XP 对接和 prime-MM/GBSA 计算来检查筛选出的命中物的结合能力。请注意,我们已经利用三种基于机器学习的评分函数来预测化合物的各种生物学特性。两种命中化合物,如 DB06920 和 DB08010,与 MEK 具有极好的结合机制和可接受的毒性特性。此外,200 ns 的 MD 模拟结合 MM-GBSA/PBSA 计算证实,DB06920 可能与 MEK 具有稳定的结合构象,因此在不久的将来将推进到实验研究中。由 Ramaswamy H. Sarma 传达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验