Suppr超能文献

心电图去噪和特征提取技术综述。

ECG denoising and feature extraction techniques - a review.

机构信息

Department of Electronics and Communication Engineering, National Institute of Technology Srinagar, Srinagar, J&K, India.

出版信息

J Med Eng Technol. 2021 Nov;45(8):672-684. doi: 10.1080/03091902.2021.1955032. Epub 2021 Aug 31.

Abstract

The electrocardiogram (ECG) is a non-invasive approach for the recording of bioelectric signals generated by the heart which is used for the examination of the electro physical state, the function of the heart, and many cardiac diseases. However, various artefacts and measurement noise usually hinder providing accurate feature extraction such as power line interference, baseline wander, electromyographic noise (EMG) and electrode motion artefact. Therefore, for better analysis and interpretation ECG signals must be noise-free. Most recent and efficient techniques for ECG denoising and feature extraction techniques have been reviewed in this paper, as feature extraction and denoising of ECG are remarkably helpful in cardiology. This paper presents the review of contemporary signal processing techniques such as discrete wavelet transform (DWT), Empirical mode decomposition (EMD), Variational mode decomposition (VMD) and Empirical wavelet transform (EWT) for ECG signal denoising and feature extraction.

摘要

心电图(ECG)是一种非侵入性的记录心脏产生的生物电信号的方法,用于检查心脏的电生理状态、功能和许多心脏疾病。然而,各种伪迹和测量噪声通常会阻碍提供准确的特征提取,如电源线干扰、基线漂移、肌电图噪声(EMG)和电极运动伪迹。因此,为了更好地分析和解释,心电图信号必须是无噪声的。本文综述了最近和有效的心电图去噪和特征提取技术,因为心电图的特征提取和去噪在心脏病学中非常有帮助。本文介绍了当代信号处理技术的综述,如离散小波变换(DWT)、经验模态分解(EMD)、变分模态分解(VMD)和经验小波变换(EWT),用于心电图信号去噪和特征提取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验