Suppr超能文献

用于增强细胞增殖和减少细菌生物膜形成的功能纳米材料和 3D 可打印纳米复合水凝胶。

Functional Nanomaterials and 3D-Printable Nanocomposite Hydrogels for Enhanced Cell Proliferation and for the Reduction of Bacterial Biofilm Formation.

机构信息

Physikalisches Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany.

Department of Pharmaceutical Microbiology, Hacettepe University Faculty of Pharmacy, Sihhiye, 06100 Ankara, Turkey.

出版信息

ACS Appl Mater Interfaces. 2021 Sep 15;13(36):43755-43768. doi: 10.1021/acsami.1c13392. Epub 2021 Aug 31.

Abstract

Biomaterial-associated infections are a major cause of biomaterial implant failure. To prevent the initial attachment of bacteria to the implant surface, researchers have investigated various surface modification methods. However, most of these approaches also prevent the attachment, spread, and growth of mammalian cells, resulting in tissue integration failure. Therefore, the success of biomaterial implants requires an optimal balance between tissue integration (cell adhesion to biomaterial implants) and inhibition of bacterial colonization. In this regard, we synthesize bifunctional nanomaterials by functionalizing the pores and outer surfaces of periodic mesoporous organosilica (PMO) with antibacterial tetracycline (Tet) and antibacterial and cell-adhesive bipolymer poly-d-lysine (PDL), respectively. Then, the fabricated PMO-PDL nanomaterials are incorporated into alginate-based hydrogels to create injectable and 3D-printable nanocomposite (NC) hydrogels (AlgL-PMO-PDL). These bifunctional nanomaterial and 3D-printable NC hydrogel show pH-dependent release of Tet over 7 days. They also enhance the proliferation of eukaryotic cells (fibroblasts). PMO-PDL is inactive in reducing , , and biofilms. However, AlgL-PMO-PDL shows significant antibiofilm activity against . These results suggest that the incorporation of PMO-PDL into AlgL may have a synergistic effect on the inhibition of the Gram-negative bacterial () biofilm, while this has no effect on the reduction of the Gram-positive bacterial ( and ) biofilm.

摘要

生物材料相关性感染是生物材料植入物失效的主要原因。为了防止细菌初始附着在植入物表面,研究人员已经研究了各种表面改性方法。然而,这些方法大多也会阻止哺乳动物细胞的附着、扩散和生长,导致组织整合失败。因此,生物材料植入物的成功需要在组织整合(细胞与生物材料植入物的附着)和抑制细菌定植之间取得最佳平衡。在这方面,我们通过分别用具有抗菌作用的四环素(Tet)和抗菌且具有细胞黏附性的双聚合物聚-d-赖氨酸(PDL)功能化周期性介孔有机硅(PMO)的孔和外表面来合成双功能纳米材料。然后,将制备的 PMO-PDL 纳米材料掺入藻酸盐基水凝胶中,以创建可注射和 3D 可打印的纳米复合材料(NC)水凝胶(AlgL-PMO-PDL)。这些双功能纳米材料和 3D 可打印 NC 水凝胶在 7 天内表现出 Tet 的 pH 依赖性释放。它们还增强了真核细胞(成纤维细胞)的增殖。PMO-PDL 在减少 、 、 和生物膜方面不起作用。然而,AlgL-PMO-PDL 对 表现出显著的抗生物膜活性。这些结果表明,将 PMO-PDL 掺入 AlgL 可能对抑制革兰氏阴性菌()生物膜具有协同作用,而对减少革兰氏阳性菌(和)生物膜没有影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验