Suppr超能文献

超快速同态加密模型实现了基因分型插补的安全外包。

Ultrafast homomorphic encryption models enable secure outsourcing of genotype imputation.

作者信息

Kim Miran, Harmanci Arif Ozgun, Bossuat Jean-Philippe, Carpov Sergiu, Cheon Jung Hee, Chillotti Ilaria, Cho Wonhee, Froelicher David, Gama Nicolas, Georgieva Mariya, Hong Seungwan, Hubaux Jean-Pierre, Kim Duhyeong, Lauter Kristin, Ma Yiping, Ohno-Machado Lucila, Sofia Heidi, Son Yongha, Song Yongsoo, Troncoso-Pastoriza Juan, Jiang Xiaoqian

机构信息

Department of Computer Science and Engineering and Graduate School of Artificial Intelligence, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.

Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77030, USA.

出版信息

Cell Syst. 2021 Nov 17;12(11):1108-1120.e4. doi: 10.1016/j.cels.2021.07.010. Epub 2021 Aug 30.

Abstract

Genotype imputation is a fundamental step in genomic data analysis, where missing variant genotypes are predicted using the existing genotypes of nearby "tag" variants. Although researchers can outsource genotype imputation, privacy concerns may prohibit genetic data sharing with an untrusted imputation service. Here, we developed secure genotype imputation using efficient homomorphic encryption (HE) techniques. In HE-based methods, the genotype data are secure while it is in transit, at rest, and in analysis. It can only be decrypted by the owner. We compared secure imputation with three state-of-the-art non-secure methods and found that HE-based methods provide genetic data security with comparable accuracy for common variants. HE-based methods have time and memory requirements that are comparable or lower than those for the non-secure methods. Our results provide evidence that HE-based methods can practically perform resource-intensive computations for high-throughput genetic data analysis. The source code is freely available for download at https://github.com/K-miran/secure-imputation.

摘要

基因型填充是基因组数据分析中的一个基本步骤,它利用附近“标签”变体的现有基因型来预测缺失的变体基因型。尽管研究人员可以将基因型填充外包,但隐私问题可能会禁止与不可信的填充服务共享遗传数据。在此,我们利用高效的同态加密(HE)技术开发了安全的基因型填充方法。在基于HE的方法中,基因型数据在传输、存储和分析过程中都是安全的。只有所有者才能对其进行解密。我们将安全填充方法与三种最先进的非安全方法进行了比较,发现基于HE的方法在常见变体方面能够提供具有可比准确性的遗传数据安全性。基于HE的方法的时间和内存需求与非安全方法相当或更低。我们的结果表明,基于HE的方法实际上可以对高通量遗传数据分析执行资源密集型计算。源代码可在https://github.com/K-miran/secure-imputation上免费下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd72/9898842/5fa9b1075376/nihms-1737731-f0001.jpg

相似文献

2
Privacy-preserving genotype imputation with fully homomorphic encryption.使用全同态加密的隐私保护基因型插补
Cell Syst. 2022 Feb 16;13(2):173-182.e3. doi: 10.1016/j.cels.2021.10.003. Epub 2021 Nov 9.
4
FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption.FORESEE:基于同态加密的全外包安全基因组研究
BMC Med Inform Decis Mak. 2015;15 Suppl 5(Suppl 5):S5. doi: 10.1186/1472-6947-15-S5-S5. Epub 2015 Dec 21.
6
Efficient and secure outsourcing of genomic data storage.基因组数据存储的高效且安全的外包
BMC Med Genomics. 2017 Jul 26;10(Suppl 2):46. doi: 10.1186/s12920-017-0275-0.
9
BLOOM: BLoom filter based oblivious outsourced matchings.布隆:基于布隆过滤器的不经意外包匹配
BMC Med Genomics. 2017 Jul 26;10(Suppl 2):44. doi: 10.1186/s12920-017-0277-y.

引用本文的文献

5
Application of privacy protection technology to healthcare big data.隐私保护技术在医疗大数据中的应用。
Digit Health. 2024 Nov 4;10:20552076241282242. doi: 10.1177/20552076241282242. eCollection 2024 Jan-Dec.
6
Privacy-Enhancing Technologies in Biomedical Data Science.生物医学数据科学中的隐私增强技术。
Annu Rev Biomed Data Sci. 2024 Aug;7(1):317-343. doi: 10.1146/annurev-biodatasci-120423-120107.
10
A resampling-based approach to share reference panels.基于重采样的共享参考面板方法。
Nat Comput Sci. 2024 May;4(5):360-366. doi: 10.1038/s43588-024-00630-7. Epub 2024 May 14.

本文引用的文献

8
A One-Penny Imputed Genome from Next-Generation Reference Panels.基于新一代参考面板的单分钱估算基因组。
Am J Hum Genet. 2018 Sep 6;103(3):338-348. doi: 10.1016/j.ajhg.2018.07.015. Epub 2018 Aug 9.
10
Genotype Imputation from Large Reference Panels.基于大型参考面板的基因型推断。
Annu Rev Genomics Hum Genet. 2018 Aug 31;19:73-96. doi: 10.1146/annurev-genom-083117-021602. Epub 2018 May 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验