Departamento de Química, Universidad del Valle, Santiago de Cali, Calle 13 # 100-00, CP 760032, Colombia.
Research Area of Growth and Environment, Metropolitan Autonomous University, Azcapotzalco (UAM-A), Av. San Pablo 180, 02200, Mexico City, Mexico.
Environ Sci Pollut Res Int. 2022 Jun;29(28):42201-42214. doi: 10.1007/s11356-021-16154-w. Epub 2021 Sep 1.
The aim of this study is to propose a continuous physicochemical model accounting for the active chlorine production used to degrade recalcitrant sulfamethoxazole (SMX) in an electrochemical flow reactor. The computational model describes the fluid mechanics and mass transfer occurring in the re/actor, along with the electrode kinetics of hydrogen evolution reaction arising on a stainless steel cathode, and the chloride oxidation on a DSA. Specifically, the anodic contributions assume the heterogeneous nature of the adsorbed chlorine species formed on this surface, which are a model requirement to correctly define the experimental reactor performance and degradation efficiency of the contaminant. The experimental validation conducted at different applied current densities, volumetric flows, and chloride concentrations is adequately explained by the model, thus evidencing some of the phenomena controlling the electrocatalytic chlorine production for environmental applications. The best conditions to eliminate the SMX are proposed based on the theoretical analysis of the current efficiency calculated with the model, and experimentally confirmed. The use of the Ti/RuO-ZrO-SbO anode at the bench scale improves the SMX removal by using electro-generated chlorine species adsorbed on its surface, which remarkably increases the oxidation potential of the system along with chlorine desorbed from the electrode. This is a technological innovation concerning other mediated oxidation methods entirely using oxidants in solution.
本研究旨在提出一个连续的物理化学模型,用于解释在电化学流动反应器中用于降解难处理的磺胺甲恶唑 (SMX) 的活性氯产生。该计算模型描述了在反应器中发生的流体力学和传质,以及不锈钢阴极上发生的析氢反应和 DSA 上的氯氧化的电极动力学。具体而言,阳极贡献假设在该表面上形成的吸附氯物种的非均相性质,这是正确定义实验反应器性能和污染物降解效率的模型要求。在不同的施加电流密度、体积流量和氯浓度下进行的实验验证被模型充分解释,从而证明了一些控制环境应用中电催化氯产生的现象。根据模型计算的电流效率的理论分析提出了消除 SMX 的最佳条件,并通过实验证实。在台架规模上使用 Ti/RuO-ZrO-SbO 阳极,通过吸附在其表面上的电生成氯物种来提高 SMX 的去除率,这显著提高了系统的氧化电位以及从电极上解吸的氯。这是一项技术创新,与完全在溶液中使用氧化剂的其他介体氧化方法完全不同。