Li Longnan, Lin Yukai, Rabbi Kazi Fazle, Ma Jingcheng, Chen Zhuo, Patel Ashay, Su Wei, Ma Xiaochen, Boyina Kalyan, Sett Soumyadip, Mondal Debkumar, Tomohiro Nagano, Hirokazu Fujino, Miljkovic Nenad
Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States.
Daikin Industries LTD,1-1, Nishi-Hitotsuya, Settsa, Osaka 566-8585, Japan.
ACS Appl Mater Interfaces. 2021 Sep 15;13(36):43489-43504. doi: 10.1021/acsami.1c08051. Epub 2021 Sep 1.
Aluminum and its alloys are widely used in various industries. Aluminum plays an important role in heat transfer applications, where enhancing the overall system performance through surface nanostructuring is achieved. Combining optimized nanostructures with a conformal hydrophobic coating leads to superhydrophobicity, which enables coalescence induced droplet jumping, enhanced condensation heat transfer, and delayed frosting. Hence, the development of a rapid, energy-efficient, and highly scalable fabrication method for rendering aluminum superhydrophobic is crucial. Here, we employ a simple, ultrascalable fabrication method to create boehmite nanostructures on aluminum. We systematically explore the influence of fabrication conditions such as water immersion time and immersion temperature, on the created nanostructure morphology and resultant nanostructure length scale. We achieved optimized structures and fabrication procedures for best droplet jumping performance as measured by total manufacturing energy utilization, fabrication time, and total cost. The wettability of the nanostructures was studied using the modified Cassie-Baxter model. To better differentiate performance of the fabricated superhydrophobic surfaces, we quantify the role of the nanostructure morphology to corresponding condensation and antifrosting performance through study of droplet jumping behavior and frost propagation dynamics. The effect of aluminum substrate composition (alloy) on wettability, condensation and antifrosting performance was investigated, providing important directions for proper substrate selection. Our findings indicate that the presence of trace alloying elements play a previously unobserved and important role on wettability, condensation, and frosting behavior via the inclusion of defect sites on the surface that are difficult to remove and act as pinning locations to increase liquid-solid adhesion. Our work provides optimization strategies for the fabrication of ultrascalable aluminum and aluminum alloy superhydrophobic surfaces for a variety of applications.
铝及其合金在各种工业中广泛应用。铝在传热应用中发挥着重要作用,通过表面纳米结构化可提高整个系统的性能。将优化的纳米结构与保形疏水涂层相结合可实现超疏水性,这能够实现聚并诱导的液滴跳跃、增强冷凝传热以及延迟结霜。因此,开发一种快速、节能且高度可扩展的使铝具有超疏水性的制造方法至关重要。在此,我们采用一种简单、超可扩展的制造方法在铝上制备勃姆石纳米结构。我们系统地探究了诸如水浸时间和浸泡温度等制造条件对所形成的纳米结构形态以及所得纳米结构长度尺度的影响。我们通过总制造能量利用、制造时间和总成本来衡量,实现了具有最佳液滴跳跃性能的优化结构和制造工艺。使用改进的卡西 - 巴克斯特模型研究了纳米结构的润湿性。为了更好地区分所制备的超疏水表面的性能,我们通过研究液滴跳跃行为和霜生长动力学来量化纳米结构形态对相应冷凝和防霜性能的作用。研究了铝基底成分(合金)对润湿性、冷凝和防霜性能的影响,为合适的基底选择提供了重要方向。我们的研究结果表明,痕量合金元素的存在通过在表面引入难以去除且作为钉扎位置以增加液 - 固附着力的缺陷位点,对润湿性、冷凝和结霜行为起到了此前未观察到的重要作用。我们的工作为制造用于各种应用的超可扩展铝及铝合金超疏水表面提供了优化策略。