Suppr超能文献

使用二维生成对抗网络合成标准12导联心电图。

Synthesis of standard 12‑lead electrocardiograms using two-dimensional generative adversarial networks.

作者信息

Zhang Yu-He, Babaeizadeh Saeed

机构信息

Advanced Algorithm Research Center, Philips Healthcare, Cambridge, MA, USA.

Advanced Algorithm Research Center, Philips Healthcare, Cambridge, MA, USA.

出版信息

J Electrocardiol. 2021 Nov-Dec;69:6-14. doi: 10.1016/j.jelectrocard.2021.08.019. Epub 2021 Aug 30.

Abstract

This paper proposes a two-dimensional (2D) bidirectional long short-term memory generative adversarial network (GAN) to produce synthetic standard 12-lead ECGs corresponding to four types of signals-left ventricular hypertrophy (LVH), left branch bundle block (LBBB), acute myocardial infarction (ACUTMI), and Normal. It uses a fully automatic end-to-end process to generate and verify the synthetic ECGs that does not require any visual inspection. The proposed model is able to produce synthetic standard 12-lead ECG signals with success rates of 98% for LVH, 93% for LBBB, 79% for ACUTMI, and 59% for Normal. Statistical evaluation of the data confirms that the synthetic ECGs are not biased towards or overfitted to the training ECGs, and span a wide range of morphological features. This study demonstrates that it is feasible to use a 2D GAN to produce standard 12-lead ECGs suitable to augment artificially a diverse database of real ECGs, thus providing a possible solution to the demand for extensive ECG datasets.

摘要

本文提出了一种二维(2D)双向长短期记忆生成对抗网络(GAN),用于生成与四种信号对应的合成标准12导联心电图,这四种信号分别是左心室肥厚(LVH)、左束支传导阻滞(LBBB)、急性心肌梗死(ACUTMI)和正常心电图。它采用全自动端到端流程来生成和验证合成心电图,无需任何目视检查。所提出的模型能够生成合成标准12导联心电图信号,其中LVH的成功率为98%,LBBB为93%,ACUTMI为79%,正常心电图为59%。对数据的统计评估证实,合成心电图不会偏向于训练心电图或出现过拟合情况,并且涵盖了广泛的形态特征。这项研究表明,使用二维GAN生成适合人工扩充真实心电图多样数据库的标准12导联心电图是可行的,从而为对大量心电图数据集的需求提供了一种可能的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验