Suppr超能文献

ECG-Image-Kit:一个用于辅助基于深度学习的心电图数字化的合成图像生成工具包。

ECG-Image-Kit: a synthetic image generation toolbox to facilitate deep learning-based electrocardiogram digitization.

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America.

Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America.

出版信息

Physiol Meas. 2024 May 28;45(5):055019. doi: 10.1088/1361-6579/ad4954.

Abstract

Cardiovascular diseases are a major cause of mortality globally, and electrocardiograms (ECGs) are crucial for diagnosing them. Traditionally, ECGs are stored in printed formats. However, these printouts, even when scanned, are incompatible with advanced ECG diagnosis software that require time-series data. Digitizing ECG images is vital for training machine learning models in ECG diagnosis, leveraging the extensive global archives collected over decades. Deep learning models for image processing are promising in this regard, although the lack of clinical ECG archives with reference time-series data is challenging. Data augmentation techniques using realistic generative data models provide a solution.We introduce, an open-source toolbox for generating synthetic multi-lead ECG images with realistic artifacts from time-series data, aimed at automating the conversion of scanned ECG images to ECG data points. The tool synthesizes ECG images from real time-series data, applying distortions like text artifacts, wrinkles, and creases on a standard ECG paper background.As a case study, we used ECG-Image-Kit to create a dataset of 21 801 ECG images from the PhysioNet QT database. We developed and trained a combination of a traditional computer vision and deep neural network model on this dataset to convert synthetic images into time-series data for evaluation. We assessed digitization quality by calculating the signal-to-noise ratio and compared clinical parameters like QRS width, RR, and QT intervals recovered from this pipeline, with the ground truth extracted from ECG time-series. The results show that this deep learning pipeline accurately digitizes paper ECGs, maintaining clinical parameters, and highlights a generative approach to digitization.The toolbox has broad applications, including model development for ECG image digitization and classification. The toolbox currently supports data augmentation for the 2024 PhysioNet Challenge, focusing on digitizing and classifying paper ECG images.

摘要

心血管疾病是全球主要的死亡原因之一,心电图(ECG)对于诊断这些疾病至关重要。传统上,心电图以打印格式存储。然而,即使这些打印件被扫描后,也与需要时间序列数据的高级心电图诊断软件不兼容。数字化心电图图像对于在心电图诊断中训练机器学习模型至关重要,可以利用几十年来全球范围内收集的广泛档案。在这方面,用于图像处理的深度学习模型很有前途,尽管缺乏具有参考时间序列数据的临床心电图档案是一个挑战。使用现实生成数据模型的数据增强技术提供了一种解决方案。我们引入了一个用于生成具有真实伪影的多导联心电图图像的开源工具包,旨在将扫描的心电图图像自动转换为心电图数据点。该工具从真实的时间序列数据中合成心电图图像,在标准心电图纸背景上应用扭曲,如文字伪影、皱纹和折痕。作为一个案例研究,我们使用 ECG-Image-Kit 从 PhysioNet QT 数据库中创建了一个 21801 个心电图图像的数据集。我们在这个数据集上开发和训练了一个传统计算机视觉和深度神经网络模型的组合,以将合成图像转换为时间序列数据进行评估。我们通过计算信噪比来评估数字化质量,并将从这个管道中恢复的 QRS 宽度、RR 和 QT 间隔等临床参数与从心电图时间序列中提取的真实值进行比较。结果表明,这种深度学习管道可以准确地数字化纸质心电图,保持临床参数,并突出了一种生成式数字化方法。该工具包有广泛的应用,包括用于心电图图像数字化和分类的模型开发。该工具包目前支持 2024 年 PhysioNet 挑战赛的数据增强,重点是数字化和分类纸质心电图图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fbe/11135178/ae689b21fb1c/pmeaad4954f1_lr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验