Suppr超能文献

时间变异性为物体类别解码提供了额外的类别相关信息:信息性 EEG 特征的系统比较。

Temporal Variabilities Provide Additional Category-Related Information in Object Category Decoding: A Systematic Comparison of Informative EEG Features.

机构信息

Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, U.K.; Perception in Action Research Centre and Department of Cognitive Science; and Department of Computing, Macquarie University, NSW 2109, Australia

Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1584743311, Iran

出版信息

Neural Comput. 2021 Oct 12;33(11):3027-3072. doi: 10.1162/neco_a_01436.

Abstract

How does the human brain encode visual object categories? Our understanding of this has advanced substantially with the development of multivariate decoding analyses. However, conventional electroencephalography (EEG) decoding predominantly uses the mean neural activation within the analysis window to extract category information. Such temporal averaging overlooks the within-trial neural variability that is suggested to provide an additional channel for the encoding of information about the complexity and uncertainty of the sensory input. The richness of temporal variabilities, however, has not been systematically compared with the conventional mean activity. Here we compare the information content of 31 variability-sensitive features against the mean of activity, using three independent highly varied data sets. In whole-trial decoding, the classical event-related potential (ERP) components of P2a and P2b provided information comparable to those provided by original magnitude data (OMD) and wavelet coefficients (WC), the two most informative variability-sensitive features. In time-resolved decoding, the OMD and WC outperformed all the other features (including the mean), which were sensitive to limited and specific aspects of temporal variabilities, such as their phase or frequency. The information was more pronounced in the theta frequency band, previously suggested to support feedforward visual processing. We concluded that the brain might encode the information in multiple aspects of neural variabilities simultaneously such as phase, amplitude, and frequency rather than mean per se. In our active categorization data set, we found that more effective decoding of the neural codes corresponds to better prediction of behavioral performance. Therefore, the incorporation of temporal variabilities in time-resolved decoding can provide additional category information and improved prediction of behavior.

摘要

人类大脑如何对视觉物体类别进行编码?随着多元解码分析的发展,我们对这一点的理解有了很大的提高。然而,传统的脑电图(EEG)解码主要使用分析窗口内的平均神经激活来提取类别信息。这种时间平均忽略了在试验内的神经变异性,这种变异性被认为提供了一个额外的通道,用于对感觉输入的复杂性和不确定性进行编码。然而,时间变异性的丰富性尚未与传统的平均活动进行系统比较。在这里,我们使用三个独立的高度变化数据集,比较了 31 个变异性敏感特征与平均活动的信息含量。在全试验解码中,经典的事件相关电位(ERP)成分 P2a 和 P2b 提供的信息与原始幅度数据(OMD)和小波系数(WC)提供的信息相当,这两种是最具信息量的变异性敏感特征。在时间分辨解码中,OMD 和 WC 优于所有其他特征(包括平均值),这些特征对时间变异性的有限和特定方面敏感,例如它们的相位或频率。在先前被认为支持前馈视觉处理的θ频带中,信息更为明显。我们得出的结论是,大脑可能同时对神经变异性的多个方面进行编码,例如相位、幅度和频率,而不仅仅是平均值本身。在我们的主动分类数据集,我们发现神经编码的更有效解码对应于行为表现的更好预测。因此,在时间分辨解码中纳入时间变异性可以提供额外的类别信息并提高行为预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验