Sandström Hilda, Rahm Martin
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden.
ACS Earth Space Chem. 2021 Aug 19;5(8):2152-2159. doi: 10.1021/acsearthspacechem.1c00195. Epub 2021 Jul 29.
Hydrogen cyanide (HCN) is known to react with complex organic materials and is a key reagent in the formation of various prebiotic building blocks, including amino acids and nucleobases. Here, we explore the possible first step in several such processes, the dimerization of HCN into iminoacetonitrile. Our study combines steered ab initio molecular dynamics and quantum chemistry to evaluate the kinetics and thermodynamics of base-catalyzed dimerization of HCN in the liquid state. Simulations predict a formation mechanism of iminoacetonitrile that is consistent with experimentally observed time scales for HCN polymerization, suggesting that HCN dimerization may be the rate-determining step in the assembly of more complex reaction products. The predicted kinetics permits for iminoacetonitrile formation in a host of astrochemical environments, including on the early Earth, on periodically heated subsurfaces of comets, and following heating events on colder bodies, such as Saturn's moon Titan.
已知氰化氢(HCN)会与复杂的有机物质发生反应,并且是包括氨基酸和核碱基在内的各种益生元构件形成过程中的关键试剂。在此,我们探究了几个此类过程中可能的第一步,即HCN二聚化为亚氨基乙腈。我们的研究结合了从头算分子动力学和量子化学,以评估液态下碱催化HCN二聚化的动力学和热力学。模拟预测了亚氨基乙腈的形成机制,该机制与实验观察到的HCN聚合时间尺度一致,这表明HCN二聚化可能是更复杂反应产物组装过程中的速率决定步骤。预测的动力学使得亚氨基乙腈能够在许多天体化学环境中形成,包括早期地球、彗星周期性加热的次表面以及诸如土星卫星土卫六等较冷天体上的加热事件之后。