Sutherland R T, Burd S C, Slichter D H, Libby S B, Leibfried D
Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas 78249, USA.
Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.
Phys Rev Lett. 2021 Aug 20;127(8):083201. doi: 10.1103/PhysRevLett.127.083201.
Transport, separation, and merging of trapped ion crystals are essential operations for most large-scale quantum computing architectures. In this Letter, we develop a theoretical framework that describes the dynamics of ions in time-varying potentials with a motional squeeze operator, followed by a motional displacement operator. Using this framework, we develop a new, general protocol for trapped ion transport, separation, and merging. We show that motional squeezing can prepare an ion wave packet to enable transfer from the ground state of one trapping potential to another. The framework and protocol are applicable if the potential is harmonic over the extent of the ion wave packets at all times. As illustrations, we discuss two specific operations: changing the strength of the confining potential for a single ion and separating same-species ions with their mutual Coulomb force. Both of these operations are, ideally, free of residual motional excitation.
对于大多数大规模量子计算架构而言,捕获离子晶体的传输、分离和合并是必不可少的操作。在本信函中,我们开发了一个理论框架,该框架使用运动压缩算符,随后是运动位移算符来描述时变势中离子的动力学。利用这个框架,我们开发了一种用于捕获离子传输、分离和合并的全新通用协议。我们表明,运动压缩可以制备一个离子波包,以实现从一个捕获势的基态转移到另一个捕获势。如果势在所有时刻在离子波包的范围内都是谐波的,则该框架和协议适用。作为示例,我们讨论两种具体操作:改变单个离子的限制势强度以及利用它们之间的库仑力分离同种离子。理想情况下,这两种操作都不会产生残余的运动激发。