Suppr超能文献

用于囚禁离子传输与分离的运动压缩

Motional Squeezing for Trapped Ion Transport and Separation.

作者信息

Sutherland R T, Burd S C, Slichter D H, Libby S B, Leibfried D

机构信息

Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas 78249, USA.

Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.

出版信息

Phys Rev Lett. 2021 Aug 20;127(8):083201. doi: 10.1103/PhysRevLett.127.083201.

Abstract

Transport, separation, and merging of trapped ion crystals are essential operations for most large-scale quantum computing architectures. In this Letter, we develop a theoretical framework that describes the dynamics of ions in time-varying potentials with a motional squeeze operator, followed by a motional displacement operator. Using this framework, we develop a new, general protocol for trapped ion transport, separation, and merging. We show that motional squeezing can prepare an ion wave packet to enable transfer from the ground state of one trapping potential to another. The framework and protocol are applicable if the potential is harmonic over the extent of the ion wave packets at all times. As illustrations, we discuss two specific operations: changing the strength of the confining potential for a single ion and separating same-species ions with their mutual Coulomb force. Both of these operations are, ideally, free of residual motional excitation.

摘要

对于大多数大规模量子计算架构而言,捕获离子晶体的传输、分离和合并是必不可少的操作。在本信函中,我们开发了一个理论框架,该框架使用运动压缩算符,随后是运动位移算符来描述时变势中离子的动力学。利用这个框架,我们开发了一种用于捕获离子传输、分离和合并的全新通用协议。我们表明,运动压缩可以制备一个离子波包,以实现从一个捕获势的基态转移到另一个捕获势。如果势在所有时刻在离子波包的范围内都是谐波的,则该框架和协议适用。作为示例,我们讨论两种具体操作:改变单个离子的限制势强度以及利用它们之间的库仑力分离同种离子。理想情况下,这两种操作都不会产生残余的运动激发。

相似文献

1
Motional Squeezing for Trapped Ion Transport and Separation.
Phys Rev Lett. 2021 Aug 20;127(8):083201. doi: 10.1103/PhysRevLett.127.083201.
3
Controlling fast transport of cold trapped ions.
Phys Rev Lett. 2012 Aug 24;109(8):080501. doi: 10.1103/PhysRevLett.109.080501. Epub 2012 Aug 20.
4
Coupled quantized mechanical oscillators.
Nature. 2011 Mar 10;471(7337):196-9. doi: 10.1038/nature09721. Epub 2011 Feb 23.
5
Coherent diabatic ion transport and separation in a multizone trap array.
Phys Rev Lett. 2012 Aug 24;109(8):080502. doi: 10.1103/PhysRevLett.109.080502. Epub 2012 Aug 20.
6
Realizing Synthetic Dimensions and Artificial Magnetic Flux in a Trapped-Ion Quantum Simulator.
Phys Rev Lett. 2024 Mar 29;132(13):130601. doi: 10.1103/PhysRevLett.132.130601.
8
Experimental quantum simulations of many-body physics with trapped ions.
Rep Prog Phys. 2012 Feb;75(2):024401. doi: 10.1088/0034-4885/75/2/024401. Epub 2012 Jan 17.
10
Trapped-ion toolkit for studies of quantum harmonic oscillators under extreme conditions.
Philos Trans A Math Phys Eng Sci. 2020 Aug 7;378(2177):20190230. doi: 10.1098/rsta.2019.0230. Epub 2020 Jul 20.

本文引用的文献

1
Demonstration of the trapped-ion quantum CCD computer architecture.
Nature. 2021 Apr;592(7853):209-213. doi: 10.1038/s41586-021-03318-4. Epub 2021 Apr 7.
2
Phonon Pair Creation by Inflating Quantum Fluctuations in an Ion Trap.
Phys Rev Lett. 2019 Nov 1;123(18):180502. doi: 10.1103/PhysRevLett.123.180502.
3
Quantum amplification of mechanical oscillator motion.
Science. 2019 Jun 21;364(6446):1163-1165. doi: 10.1126/science.aaw2884.
4
Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions.
J Res Natl Inst Stand Technol. 1998 May-Jun;103(3):259-328. doi: 10.6028/jres.103.019. Epub 1998 Jun 1.
5
High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits.
Phys Rev Lett. 2016 Aug 5;117(6):060505. doi: 10.1103/PhysRevLett.117.060505. Epub 2016 Aug 4.
6
High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.
Phys Rev Lett. 2016 Aug 5;117(6):060504. doi: 10.1103/PhysRevLett.117.060504. Epub 2016 Aug 4.
7
Quantum optics. Quantum harmonic oscillator state synthesis by reservoir engineering.
Science. 2015 Jan 2;347(6217):53-6. doi: 10.1126/science.1261033. Epub 2014 Dec 18.
8
High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit.
Phys Rev Lett. 2014 Nov 28;113(22):220501. doi: 10.1103/PhysRevLett.113.220501. Epub 2014 Nov 24.
9
Coherent diabatic ion transport and separation in a multizone trap array.
Phys Rev Lett. 2012 Aug 24;109(8):080502. doi: 10.1103/PhysRevLett.109.080502. Epub 2012 Aug 20.
10
Quantum computers.
Nature. 2010 Mar 4;464(7285):45-53. doi: 10.1038/nature08812.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验