Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088, USA.
Nature. 2010 Mar 4;464(7285):45-53. doi: 10.1038/nature08812.
Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.
在过去的几十年中,量子信息科学已经出现,试图回答这样一个问题:我们是否可以通过存储、传输和处理以具有独特量子特性的系统编码的信息来获得优势?如今,人们已经认识到答案是肯定的,并且世界各地的许多研究小组都在朝着构建量子计算机的这一极具雄心的技术目标努力,这将极大地提高特定任务的计算能力。许多物理系统,涵盖了现代物理学的大部分领域,都在被开发用于量子计算。然而,目前尚不清楚哪种技术(如果有的话)最终会成功。在这里,我们描述了每种主要方法的最新发展,并解释了未来的主要挑战。
Nature. 2010-3-4
Chem Rev. 2020-11-25
Rep Prog Phys. 2013-6-20
Phys Life Rev. 2012-7-10
Nature. 2022-7
Phys Biol. 2014-4-15
Proc Natl Acad Sci U S A. 2015-3-31
Natl Sci Rev. 2019-3
IEEE Trans Neural Netw Learn Syst. 2020-7
Entropy (Basel). 2025-8-10
Nat Commun. 2025-7-29
Proc Natl Acad Sci U S A. 2025-7-8
ACS Appl Mater Interfaces. 2025-7-23
Sci Rep. 2025-5-28
ACS Photonics. 2025-4-22
Sci Rep. 2025-5-23
Sci Rep. 2025-4-18
Phys Rev Lett. 2009-7-31
Nature. 2009-9-24
Science. 2009-9-4
Nat Mater. 2009-5