Tan Yi-Hong, Lu Gong-Xun, Zheng Jian-Hui, Zhou Fei, Chen Mei, Ma Tao, Lu Lei-Lei, Song Yong-Hui, Guan Yong, Wang Junxiong, Liang Zheng, Xu Wen-Shan, Zhang Yuegang, Tao Xinyong, Yao Hong-Bin
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
Adv Mater. 2021 Oct;33(42):e2102134. doi: 10.1002/adma.202102134. Epub 2021 Sep 3.
Electrolyte engineering via fluorinated additives is promising to improve cycling stability and safety of high-energy Li-metal batteries. Here, an electrolyte is reported in a porous lithium fluoride (LiF) strategy to enable efficient carbonate electrolyte engineering for stable and safe Li-metal batteries. Unlike traditionally engineered electrolytes, the prepared electrolyte in the porous LiF nanobox exhibits nonflammability and high electrochemical performance owing to strong interactions between the electrolyte solvent molecules and numerous exposed active LiF (111) crystal planes. Via cryogenic transmission electron microscopy and X-ray photoelectron spectroscopy depth analysis, it is revealed that the electrolyte in active porous LiF nanobox involves the formation of a high-fluorine-content (>30%) solid electrolyte interphase layer, which enables very stable Li-metal anode cycling over one thousand cycles under high current density (4 mA cm ). More importantly, employing the porous LiF nanobox engineered electrolyte, a Li || LiNi Co Mn O pouch cell is achieved with a specific energy of 380 Wh kg for stable cycling over 80 cycles, representing the excellent performance of the Li-metal pouch cell using practical carbonate electrolyte. This study provides a new electrolyte engineering strategy for stable and safe Li-metal batteries.
通过含氟添加剂进行电解质工程有望改善高能锂金属电池的循环稳定性和安全性。在此,报道了一种采用多孔氟化锂(LiF)策略的电解质,以实现用于稳定且安全的锂金属电池的高效碳酸盐电解质工程。与传统设计的电解质不同,多孔LiF纳米盒中制备的电解质具有不可燃性和高电化学性能,这归因于电解质溶剂分子与众多暴露的活性LiF(111)晶面之间的强相互作用。通过低温透射电子显微镜和X射线光电子能谱深度分析表明,活性多孔LiF纳米盒中的电解质涉及形成高氟含量(>30%)的固体电解质界面层,这使得锂金属阳极在高电流密度(4 mA cm²)下能够非常稳定地循环超过一千次。更重要的是,采用多孔LiF纳米盒设计的电解质,实现了Li||LiNi₀.₈Co₀.₁Mn₀.₁O₂软包电池,其比能量为380 Wh kg,能够在80次循环中稳定循环,代表了使用实用碳酸盐电解质的锂金属软包电池的优异性能。这项研究为稳定且安全的锂金属电池提供了一种新的电解质工程策略。