Harandi M Reza J, Khalilpour S Ahmad, Taghirad Hamid D
Advanced Robotics and Automated Systems (ARAS), Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
ISA Trans. 2022 Jul;126:574-584. doi: 10.1016/j.isatra.2021.08.026. Epub 2021 Aug 23.
Uncertainties in dynamic and kinematic parameters are unavoidable components in the control of robotic manipulators. Although calibration is a well-known method to reject this issue, it is time-consuming, some parameters may be altered slowly, and therefore, it is not applicable to some special cases such as deployable cable-driven robots. This paper addresses an adaptive dynamic feedback controller in which the adaptation laws together with new states could remedy these shortcomings and may be appropriately used in deployable cable-driven robots. For this purpose, the Jacobian matrix and its determinant are expressed in regressor form. Additionally, a non-singular sliding surface is considered for the trajectory tracking error. The fast finite-time feasible trajectory tracking is ensured by Lyapunov direct method using an appropriate design of adaptation laws of unknown parameters together with dynamical matrices in the presence of external disturbance. A 4RPR (revolute-prismatic-revolute) redundant rigid body and a fully actuated 3-DOF cable-driven robot are considered to verify the proposed method and also compare the results with state-of-art by simulation and experiment.
在机器人操纵器的控制中,动力学和运动学参数的不确定性是不可避免的组成部分。尽管校准是解决这个问题的一种众所周知的方法,但它很耗时,一些参数可能会缓慢变化,因此,它不适用于某些特殊情况,如可展开的缆索驱动机器人。本文提出了一种自适应动态反馈控制器,其中自适应律与新的状态一起可以弥补这些缺点,并可适当地用于可展开的缆索驱动机器人。为此,雅可比矩阵及其行列式以回归形式表示。此外,还为轨迹跟踪误差考虑了一个非奇异滑模面。在存在外部干扰的情况下,通过李雅普诺夫直接法,利用未知参数的自适应律和动力学矩阵的适当设计,确保了快速有限时间可行轨迹跟踪。考虑了一个4RPR(旋转-棱柱-旋转)冗余刚体和一个全驱动3自由度缆索驱动机器人,以验证所提出的方法,并通过仿真和实验将结果与现有技术进行比较。