INSERM U1105, Université de Picardie, GRAMFC, CURS, CHU Sud, rue René Laennec, 80036 Amiens Cedex 1, France.
INSERM U1105, Université de Picardie, GRAMFC, CURS, CHU Sud, rue René Laennec, 80036 Amiens Cedex 1, France; INSERM U1105, EFSN Pédiatrique, CHU Amiens sud, Avenue Laennec, 80054 Amiens cedex.
Neurophysiol Clin. 2021 Oct;51(5):409-424. doi: 10.1016/j.neucli.2021.08.001. Epub 2021 Sep 1.
Reversal learning is widely used to analyze cognitive flexibility and characterize behavioral abnormalities associated with impulsivity and disinhibition. Recent studies using fMRI have focused on regions involved in reversal learning with negative and positive reinforcers. Although the frontal cortex has been consistently implicated in reversal learning, few studies have focused on whether reward and punishment may have different effects on lateral frontal structures in these tasks.
During this pilot study on eight healthy subjects, we used functional near infra-red spectroscopy (fNIRS) to characterize brain activity dynamics and differentiate the involvement of frontal structures in learning driven by reward and punishment.
We observed functional hemispheric asymmetries between punishment and reward processing by fNIRS following reversal of a learned rule. Moreover, the left dorsolateral prefrontal cortex (l-DLPFC) and inferior frontal gyrus (IFG) were activated under the reward condition only, whereas the orbito-frontal cortex (OFC) was significantly activated under the punishment condition, with a tendency towards activation for the right cortical hemisphere (r-DLPFC and r-IFG). Our results are compatible with the suggestion that the DLPFC is involved in the detection of contingency change. We propose a new representation for reward and punishment, with left lateralization for the reward process.
The results of this pilot study provide insights into the indirect neural mechanisms of reversal learning and behavioral flexibility and confirm the use of fNIRS imaging in reversal-learning tasks as a translational strategy, particularly in subjects who cannot undergo fMRI recordings.
反转学习被广泛用于分析认知灵活性,并描述与冲动和抑制障碍相关的行为异常。最近使用 fMRI 的研究集中在涉及正负强化的反转学习的相关区域。虽然前额皮质一直被认为与反转学习有关,但很少有研究关注奖励和惩罚是否会对这些任务中侧额结构产生不同的影响。
在这项针对 8 名健康受试者的初步研究中,我们使用功能近红外光谱(fNIRS)来描述大脑活动动力学,并区分在奖励和惩罚驱动的学习中额叶结构的参与。
我们观察到在学习规则反转后,fNIRS 可以对惩罚和奖励处理进行功能半球不对称性分析。此外,在奖励条件下仅激活左背外侧前额皮质(l-DLPFC)和下额前回(IFG),而在惩罚条件下眶额皮质(OFC)显著激活,右侧皮质半球(r-DLPFC 和 r-IFG)也有激活的趋势。我们的结果与 DLPFC 参与检测条件变化的观点一致。我们提出了一个新的奖励和惩罚表示法,奖励过程偏向左侧。
这项初步研究的结果提供了对反转学习和行为灵活性的间接神经机制的深入了解,并证实了在反转学习任务中使用 fNIRS 成像作为一种转化策略的可行性,特别是在无法进行 fMRI 记录的受试者中。