Department of Mathematics, The ENS de Lyon, Lyon, 69342, France.
Department of Mathematics, University of Manitoba, Manitoba, R3T 2N2, Canada; Department of Biological Sciences, University of Manitoba, Manitoba, R3T 2N2, Canada.
Math Biosci. 2022 Apr;346:108692. doi: 10.1016/j.mbs.2021.108692. Epub 2021 Sep 3.
The climate change has the potential to dramatically affect species' thermal physiology and may change the ecology and evolution of species' lineages. In this work, we investigated the transition of dynamics in the heat shock response when the thermal stress approaches the upper thermal limits of species to understand how the climate change may affect the heat shock responses in ectotherms and endotherms. The heat shock protein 70, HSP70, prevents protein denaturation or misfolding under thermal stresses. When thermal stress increases, the number of misfolded proteins increases, which leads to high levels of HSP70 protein. However, when temperatures approach limits of thermal tolerance (i.e., the critical thermal maximum, CTmax, for ectotherms and the superior critical temperature, SCT, for endotherms), levels of HSP70 protein synthesis start to decrease. Thus, we hypothesized that the temperature at the first reduction of HSP abundance indicates the thermal limits of the species. In this work, we provide a mathematical model to investigate the behavior of the heat shock responses related to HSP70 protein. This model captures the dynamics of HSP70 protein and Hsp70 mRNA, in HeLa cells (i.e., representative for endotherms) and multiple species of fishes (i.e., representative for ectotherms) with different acclimation histories. Based on our hypothesis of the relationship between the HSP70 protein level and CTmax/SCT, our model provides three methods to predict the CTmax of fishes with varying acclimation temperature and the SCT of HeLa cells. The CTmax increases as the acclimation temperature increases in fishes, however the CTmax plateaus when the acclimation temperature is higher than 20°C in brook trout, a representative cool water salmonid. Our model also captures the situation that the heat shock reaction in fish is more sensitive to the heat shock temperature than HeLa cells, when the heat shock temperature is lower than the upper thermal tolerance. However, both fish and HeLa cells are sensitive to the heat shock temperature when the temperature reaches the thermal tolerance limits. Additionally, our sensitive analysis result indicates that the status of some components in the heat shock reaction changes when the temperature reaches the thermal tolerance resulting in failure in protein refolding in fish and speeding up the refolding process in HeLa cells. Mathematical analysis is also applied on a simplified mathematical model to investigate the detailed dynamics of the model, such as the steady states of the substrate, Hsp70 mRNA, and HSP70 protein, at different thermal stresses. The comparison between the original model and simplified model shows that the inhibition on HSP70 protein transcription by thermal stresses leads to the reduction in HSP70 protein at extreme temperatures.
气候变化有可能极大地影响物种的热生理学,并可能改变物种谱系的生态和进化。在这项工作中,我们研究了热休克反应中动力学的转变,当热应激接近物种的上限温度时,以了解气候变化可能如何影响变温动物和恒温动物的热休克反应。热休克蛋白 70(HSP70)可防止蛋白质在热应激下变性或错误折叠。当热应激增加时,错误折叠的蛋白质数量增加,导致 HSP70 蛋白水平升高。然而,当温度接近热耐受极限(即变温动物的临界热最大值(CTmax)和恒温动物的超临界温度(SCT))时,HSP70 蛋白合成的水平开始下降。因此,我们假设 HSP 丰度首次减少的温度指示了物种的热极限。在这项工作中,我们提供了一个数学模型来研究与 HSP70 蛋白相关的热休克反应的行为。该模型捕获了 HSP70 蛋白和 Hsp70 mRNA 在 HeLa 细胞(即恒温动物的代表)和具有不同驯化历史的多种鱼类(即变温动物的代表)中的动力学。基于 HSP70 蛋白水平与 CTmax/SCT 之间关系的假设,我们的模型提供了三种方法来预测具有不同驯化温度的鱼类的 CTmax 和 HeLa 细胞的 SCT。在鱼类中,随着驯化温度的升高,CTmax 增加,但当驯化温度高于 20°C 时,冷水鲑鱼(brook trout)的 CTmax 达到平台期,这是一种代表性的冷水鲑鱼。我们的模型还捕获了这样一种情况,即当热应激温度低于上限热耐受温度时,鱼类的热休克反应比 HeLa 细胞对热应激温度更敏感。然而,当温度达到热耐受极限时,鱼类和 HeLa 细胞都对热应激温度敏感。此外,我们的敏感分析结果表明,当温度达到热耐受极限时,热休克反应中的一些成分的状态发生变化,导致鱼类中的蛋白质重折叠失败,并加速 HeLa 细胞中的重折叠过程。数学分析也应用于简化的数学模型,以研究模型在不同热应激下的详细动力学,例如底物、Hsp70 mRNA 和 HSP70 蛋白的稳定状态。原始模型和简化模型之间的比较表明,热应激对 HSP70 蛋白转录的抑制导致 HSP70 蛋白在极端温度下减少。