Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
Philos Trans R Soc Lond B Biol Sci. 2021 Oct 25;376(1836):20200252. doi: 10.1098/rstb.2020.0252. Epub 2021 Sep 6.
Comparative animal studies of complex behavioural traits, and their neurobiological underpinnings, can increase our understanding of their evolution, including in humans. Vocal learning, a potential precursor to human speech, is one such trait. Mammalian vocal learning is under-studied: most research has either focused on vocal learning in songbirds or its absence in non-human primates. Here, we focus on a highly promising model species for the neurobiology of vocal learning: grey seals (). We provide a neuroanatomical atlas (based on dissected brain slices and magnetic resonance images), a labelled MRI template, a three-dimensional model with volumetric measurements of brain regions, and histological cortical stainings. Four main features of the grey seal brain stand out: (i) it is relatively big and highly convoluted; (ii) it hosts a relatively large temporal lobe and cerebellum; (iii) the cortex is similar to that of humans in thickness and shows the expected six-layered mammalian structure; (iv) there is expression of FoxP2 present in deeper layers of the cortex; is a gene involved in motor learning, vocal learning, and spoken language. Our results could facilitate future studies targeting the neural and genetic underpinnings of mammalian vocal learning, thus bridging the research gap from songbirds to humans and non-human primates. Our findings are relevant not only to vocal learning research but also to the study of mammalian neurobiology and cognition more in general. This article is part of the theme issue 'Vocal learning in animals and humans'.
对复杂行为特征及其神经生物学基础的比较动物研究,可以增进我们对其进化的理解,包括人类的进化。发声学习是一种潜在的人类言语先驱,就是这样一种特征。哺乳动物的发声学习研究不足:大多数研究要么集中在鸣禽的发声学习上,要么集中在非人类灵长类动物没有发声学习上。在这里,我们关注的是发声学习神经生物学的一个极有前途的模型物种:灰海豹()。我们提供了一个神经解剖图谱(基于解剖脑切片和磁共振图像)、一个标记的 MRI 模板、一个具有大脑区域体积测量的三维模型,以及皮质组织学染色。灰海豹大脑的四个主要特征突出:(i)它相对较大且高度卷曲;(ii)它拥有相对较大的颞叶和小脑;(iii)大脑皮质的厚度与人类相似,显示出预期的六层哺乳动物结构;(iv)皮质的深层有 FoxP2 的表达;FoxP2 是一个参与运动学习、发声学习和口语的基因。我们的研究结果可以促进未来针对哺乳动物发声学习的神经和遗传基础的研究,从而弥合从鸣禽到人类和非人类灵长类动物的研究差距。我们的发现不仅与发声学习研究有关,而且与一般的哺乳动物神经生物学和认知研究有关。本文是主题为“动物和人类的发声学习”的特刊的一部分。