Yu Xing, Wang Xinxin, Zhang Weiguo, Li Zijin
School of Economics and Business Administration, Central China Normal University, Wuhan, 430079 China.
School of Business Administration, South China University of Technology, Guangzhou, 510640 China.
Soft comput. 2021;25(23):14769-14783. doi: 10.1007/s00500-021-06185-3. Epub 2021 Sep 1.
In this paper, we study the hedging effectiveness of crude oil futures on the basis of the lower partial moments (LPMs). An improved kernel density estimation method is proposed to estimate the optimal hedge ratio. We investigate crude oil price hedging by contributing to the literature in the following twofold: First, unlike the existing studies which focus on univariate kernel density method, we use bivariate kernel density to calculate the estimated LPMs, wherein the two bandwidths of the bivariate kernel density are not limited to the same, which is our main innovation point. According to the criterion of minimizing the mean integrated square error, we derive the conditions that the optimal bandwidths satisfy. In the process of derivation, we make a distribution assumption locally in order to simplify calculation, but this type of local distribution assumption is far better than global distribution assumption used in parameter method theoretically and empirically. Second, in order to meet the requirement of bivariate kernel density for independent random variables, we adopt ARCH models to obtain the independent noises with related to the returns of crude oil spot and futures. Genetic algorithm is used to tune the parameters that maximize quasi-likelihood. Empirical results reveal that, at first, the hedging strategy based on the improved kernel density estimation method is of highly efficiency, and then it achieves better performance than the hedging strategy based on the traditional parametric method. We also compare the risk control effectiveness of static hedge ratio vs. time-varying hedge ratio and find that static hedging has a better performance than time-varying hedging.
在本文中,我们基于下偏矩(LPMs)研究原油期货的套期保值有效性。提出了一种改进的核密度估计方法来估计最优套期保值比率。我们通过在以下两个方面对文献做出贡献来研究原油价格套期保值:第一,与现有专注于单变量核密度方法的研究不同,我们使用双变量核密度来计算估计的下偏矩,其中双变量核密度的两个带宽不限于相同,这是我们的主要创新点。根据最小化平均积分平方误差的准则,我们推导了最优带宽满足的条件。在推导过程中,我们进行局部分布假设以简化计算,但这种局部分布假设在理论和实证上都远优于参数方法中使用的全局分布假设。第二,为了满足双变量核密度对独立随机变量的要求,我们采用ARCH模型来获得与原油现货和期货收益相关的独立噪声。使用遗传算法来调整使拟似然最大化的参数。实证结果表明,首先,基于改进核密度估计方法的套期保值策略具有很高的效率,其次,它比基于传统参数方法的套期保值策略具有更好的表现。我们还比较了静态套期保值比率和时变套期保值比率的风险控制有效性,发现静态套期保值比时变套期保值表现更好。