Suppr超能文献

嗅觉受体基因在四足动物中的进化异常迅速,超过了化学感应表型的变化。

Olfactory receptor gene evolution is unusually rapid across Tetrapoda and outpaces chemosensory phenotypic change.

作者信息

Yohe Laurel R, Fabbri Matteo, Hanson Michael, Bhullar Bhart-Anjan S

机构信息

Department of Earth & Planetary Science, Peabody Museum of Natural History, Yale University, New Haven, CT, 06511, USA.

出版信息

Curr Zool. 2020 Oct;66(5):505-514. doi: 10.1093/cz/zoaa051. Epub 2020 Sep 3.

Abstract

Chemosensation is the most ubiquitous sense in animals, enacted by the products of complex gene families that detect environmental chemical cues and larger-scale sensory structures that process these cues. While there is a general conception that olfactory receptor () genes evolve rapidly, the universality of this phenomenon across vertebrates, and its magnitude, are unclear. The supposed correlation between molecular rates of chemosensory evolution and phenotypic diversity of chemosensory systems is largely untested. We combine comparative genomics and sensory morphology to test whether genes and olfactory phenotypic traits evolve at faster rates than other genes or traits. Using published genomes, we identified s in 21 tetrapods, including amphibians, reptiles, birds, and mammals and compared their rates of evolution to those of orthologous non- protein-coding genes. We found that, for all clades investigated, most genes evolve nearly an order of magnitude faster than other protein-coding genes, with many genes showing signatures of diversifying selection across nearly all taxa in this study. This rapid rate of evolution suggests that chemoreceptor genes are in "evolutionary overdrive," perhaps evolving in response to the ever-changing chemical space of the environment. To obtain complementary morphological data, we stained whole fixed specimens with iodine, µCT-scanned the specimens, and digitally segmented chemosensory and nonchemosensory brain regions. We then estimated phenotypic variation within traits and among tetrapods. While we found considerable variation in chemosensory structures, they were no more diverse than nonchemosensory regions. We suggest chemoreceptor genes evolve quickly in reflection of an ever-changing chemical space, whereas chemosensory phenotypes and processing regions are more conserved because they use a standardized or constrained architecture to receive and process a range of chemical cues.

摘要

化学感应是动物中最普遍存在的一种感觉,由检测环境化学信号的复杂基因家族产物以及处理这些信号的更大规模的感觉结构来实现。虽然人们普遍认为嗅觉受体(OR)基因进化迅速,但这种现象在脊椎动物中的普遍性及其程度尚不清楚。化学感应进化的分子速率与化学感应系统表型多样性之间的假定相关性在很大程度上未经检验。我们结合比较基因组学和感觉形态学来测试OR基因和嗅觉表型特征的进化速率是否比其他基因或特征更快。利用已发表的基因组,我们在21种四足动物中鉴定出了OR,包括两栖动物、爬行动物、鸟类和哺乳动物,并将它们的进化速率与直系同源非OR蛋白质编码基因的进化速率进行了比较。我们发现,对于所有研究的进化枝来说,大多数OR基因的进化速度比其他蛋白质编码基因快近一个数量级,在本研究中几乎所有分类群中,许多OR基因都显示出多样化选择的特征。这种快速的进化速率表明化学感受器基因处于“进化超速状态”,可能是为了应对不断变化的环境化学空间而进化。为了获得补充的形态学数据,我们用碘对整个固定标本进行染色,对标本进行μCT扫描,并对化学感应和非化学感应脑区进行数字分割。然后我们估计了性状内部和四足动物之间的表型变异。虽然我们发现化学感应结构存在相当大的变异,但它们并不比非化学感应区域更多样化。我们认为化学感受器基因快速进化以反映不断变化的化学空间,而化学感应表型和处理区域更保守,因为它们使用标准化或受限的结构来接收和处理一系列化学信号。

相似文献

1
Olfactory receptor gene evolution is unusually rapid across Tetrapoda and outpaces chemosensory phenotypic change.
Curr Zool. 2020 Oct;66(5):505-514. doi: 10.1093/cz/zoaa051. Epub 2020 Sep 3.
3
Diversity and evolution of the vertebrate chemoreceptor gene repertoire.
Nat Commun. 2024 Feb 15;15(1):1421. doi: 10.1038/s41467-024-45500-y.
4
Neurogenomics and the role of a large mutational target on rapid behavioral change.
Biol Direct. 2016 Nov 8;11(1):60. doi: 10.1186/s13062-016-0162-1.
5
Ecological constraints on highly evolvable olfactory receptor genes and morphology in neotropical bats.
Evolution. 2022 Oct;76(10):2347-2360. doi: 10.1111/evo.14591. Epub 2022 Aug 30.
8
Strong links between genomic and anatomical diversity in both mammalian olfactory chemosensory systems.
Proc Biol Sci. 2014 Apr 9;281(1783):20132828. doi: 10.1098/rspb.2013.2828. Print 2014 May 22.
9
Molecular and cellular organization of insect chemosensory neurons.
Bioessays. 2006 Jan;28(1):23-34. doi: 10.1002/bies.20338.
10
The molecular biology of vertebrate olfaction.
Anat Rec (Hoboken). 2014 Nov;297(11):2216-26. doi: 10.1002/ar.23031.

引用本文的文献

1
Wider Than the Sky: An Alternative to "Mapping" the World Onto the Brain.
Eur J Neurosci. 2025 Aug;62(4):e70224. doi: 10.1111/ejn.70224.
2
Echolocation and dietary adaptations mediate brain-endocast covariation in bats.
iScience. 2025 Mar 4;28(4):112159. doi: 10.1016/j.isci.2025.112159. eCollection 2025 Apr 18.
3
The Importance of Olfaction for Mixed Paternity in Birds.
Ecol Evol. 2025 Jan 16;15(1):e70863. doi: 10.1002/ece3.70863. eCollection 2025 Jan.
4
A metric and its derived protein network for evaluation of ortholog database inconsistency.
BMC Bioinformatics. 2025 Jan 7;26(1):6. doi: 10.1186/s12859-024-06023-x.
5
Individual and population diversity of 20 representative olfactory receptor genes in pigs.
Sci Rep. 2023 Oct 31;13(1):18668. doi: 10.1038/s41598-023-45784-y.
6
Tracking the Diversity and Chromosomal Distribution of the Olfactory Receptor Gene Repertoires of Three Anurans Species.
J Mol Evol. 2023 Dec;91(6):793-805. doi: 10.1007/s00239-023-10135-y. Epub 2023 Oct 31.
7
Divergent sensory and immune gene evolution in sea turtles with contrasting demographic and life histories.
Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2201076120. doi: 10.1073/pnas.2201076120. Epub 2023 Feb 7.
8
Placing human gene families into their evolutionary context.
Hum Genomics. 2022 Nov 11;16(1):56. doi: 10.1186/s40246-022-00429-5.
9
Ecological constraints on highly evolvable olfactory receptor genes and morphology in neotropical bats.
Evolution. 2022 Oct;76(10):2347-2360. doi: 10.1111/evo.14591. Epub 2022 Aug 30.
10
Male pheromones and their reception by females are co-adapted to affect mating success in two subspecies of brown rats.
Curr Zool. 2020 Oct 23;67(4):371-382. doi: 10.1093/cz/zoaa066. eCollection 2021 Aug.

本文引用的文献

1
Multi-glomerular projection of single olfactory receptor neurons is conserved among amphibians.
J Comp Neurol. 2020 Sep 1;528(13):2239-2253. doi: 10.1002/cne.24887. Epub 2020 Feb 27.
2
Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation.
PLoS Biol. 2019 Dec 4;17(12):e3000494. doi: 10.1371/journal.pbio.3000494. eCollection 2019 Dec.
5
Protocols for the Molecular Evolutionary Analysis of Membrane Protein Gene Duplicates.
Methods Mol Biol. 2019;1851:49-62. doi: 10.1007/978-1-4939-8736-8_3.
6
Evolutionary ecology of chemosensation and its role in sensory drive.
Curr Zool. 2018 Aug;64(4):525-533. doi: 10.1093/cz/zoy048. Epub 2018 Jul 2.
7
Comparative genomic investigation of high-elevation adaptation in ectothermic snakes.
Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8406-8411. doi: 10.1073/pnas.1805348115. Epub 2018 Jul 31.
9
The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life.
Nat Ecol Evol. 2018 May;2(5):850-858. doi: 10.1038/s41559-018-0515-5. Epub 2018 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验