Suppr超能文献

GCRFLDA:基于图卷积矩阵补全和条件随机场的评分长链非编码 RNA-疾病关联。

GCRFLDA: scoring lncRNA-disease associations using graph convolution matrix completion with conditional random field.

机构信息

School of Computer Science and Information Security, Guilin University of Electronic Technology.

Guilin University of Electronic Technology, Guilin 541004, China.

出版信息

Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab361.

Abstract

Long noncoding RNAs (lncRNAs) play important roles in various biological regulatory processes, and are closely related to the occurrence and development of diseases. Identifying lncRNA-disease associations is valuable for revealing the molecular mechanism of diseases and exploring treatment strategies. Thus, it is necessary to computationally predict lncRNA-disease associations as a complementary method for biological experiments. In this study, we proposed a novel prediction method GCRFLDA based on the graph convolutional matrix completion. GCRFLDA first constructed a graph using the available lncRNA-disease association information. Then, it constructed an encoder consisting of conditional random field and attention mechanism to learn efficient embeddings of nodes, and a decoder layer to score lncRNA-disease associations. In GCRFLDA, the Gaussian interaction profile kernels similarity and cosine similarity were fused as side information of lncRNA and disease nodes. Experimental results on four benchmark datasets show that GCRFLDA is superior to other existing methods. Moreover, we conducted case studies on four diseases and observed that 70 of 80 predicted associated lncRNAs were confirmed by the literature.

摘要

长链非编码 RNA(lncRNA)在各种生物调控过程中发挥重要作用,与疾病的发生和发展密切相关。鉴定 lncRNA-疾病关联对于揭示疾病的分子机制和探索治疗策略具有重要价值。因此,需要通过计算预测 lncRNA-疾病关联作为生物实验的补充方法。在这项研究中,我们提出了一种基于图卷积矩阵补全的新预测方法 GCRFLDA。GCRFLDA 首先利用现有的 lncRNA-疾病关联信息构建一个图。然后,它构建了一个由条件随机场和注意力机制组成的编码器,以学习节点的有效嵌入,并使用解码器层对 lncRNA-疾病关联进行评分。在 GCRFLDA 中,高斯相互作用核相似度和余弦相似度被融合为 lncRNA 和疾病节点的侧信息。在四个基准数据集上的实验结果表明,GCRFLDA 优于其他现有方法。此外,我们对四种疾病进行了案例研究,观察到 80 个预测的相关 lncRNA 中有 70 个得到了文献的证实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验