Suppr超能文献

一种基于卷积神经网络推断长链非编码RNA与疾病关联的新型端到端学习框架。

A novel end-to-end learning framework for inferring lncRNA-disease associations based on convolution neural network.

作者信息

Zhou Shunxian, Chen Sisi, Le Jinhai, Xu Yangtai, Wang Lei

机构信息

College of Information Science and Engineering, Hunan Women's University, Changsha, China.

The First Hospital of Hunan University of Chinese Medicine, Changsha, China.

出版信息

Front Genet. 2025 Apr 9;16:1580512. doi: 10.3389/fgene.2025.1580512. eCollection 2025.

Abstract

INTRODUCTION

In recent years, lots of computational models have been proposed to infer potential lncRNA-disease associations.

METHODS

In this manuscript, we introduced a novel end-to-end learning framework named CNMCLDA, in which, we first adopted two convolutional neural networks to extract hidden features of diseases and lncRNAs separately. And then, by combining these hidden features of diseases and lncRNAs with known lncRNA-disease associations, we designed five different loss functions. Next, based on errors obtained by these loss functions, we would perform back propagation to fit parameters in CNMCLDA, and complete those missing values in lncRNA-disease relational matrix according to these fitted parameters. In order to demonstrate the prediction performance of CNMCLDA, intensive experiments have been carried out and experimental results show that CNMCLDA can achieve better performances than state-of-the-art competitive predictive models in frameworks of five-fold cross validation, ten-fold cross validation and leave-one-disease-out cross validation respectively.

RESULTS AND DISCUSSION

Moreover, in case studies of gastric cancer, glioma and breast cancer, there are 19, 17 and 16 out of top 20 candidate lncRNAs inferred by CNMCLDA having been confirmed by recent relevant literatures separately, which demonstrated the outstanding performance of CNMCLDA as well. Hence, it is obvious that CNMCLDA may be an effective tool for prediction of potential lncRNA-disease associations in the future.

摘要

引言

近年来,已经提出了许多计算模型来推断潜在的长链非编码RNA(lncRNA)与疾病的关联。

方法

在本论文中,我们引入了一种名为CNMCLDA的新型端到端学习框架,在该框架中,我们首先采用两个卷积神经网络分别提取疾病和lncRNA的隐藏特征。然后,通过将疾病和lncRNA的这些隐藏特征与已知的lncRNA-疾病关联相结合,我们设计了五种不同的损失函数。接下来,基于这些损失函数获得的误差,我们将进行反向传播以拟合CNMCLDA中的参数,并根据这些拟合参数完成lncRNA-疾病关系矩阵中的缺失值。为了证明CNMCLDA的预测性能,我们进行了大量实验,实验结果表明,在五折交叉验证、十折交叉验证和留一病交叉验证框架下,CNMCLDA分别比现有最具竞争力的预测模型具有更好的性能。

结果与讨论

此外,在胃癌、神经胶质瘤和乳腺癌的案例研究中,CNMCLDA推断出的前20个候选lncRNA中分别有19个、17个和16个已被最近的相关文献证实,这也证明了CNMCLDA的出色性能。因此,很明显,CNMCLDA未来可能是预测潜在lncRNA-疾病关联的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e056/12014579/4730b30abbc3/fgene-16-1580512-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验