Suppr超能文献

通过机器学习识别的面肩肱型肌营养不良症的诊断性磁共振成像生物标志物。

Diagnostic magnetic resonance imaging biomarkers for facioscapulohumeral muscular dystrophy identified by machine learning.

作者信息

Monforte Mauro, Bortolani Sara, Torchia Eleonora, Cristiano Lara, Laschena Francesco, Tartaglione Tommaso, Ricci Enzo, Tasca Giorgio

机构信息

Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.

Dipartimento di Radiologia, IDI IRCCS, Rome, Italy.

出版信息

J Neurol. 2022 Apr;269(4):2055-2063. doi: 10.1007/s00415-021-10786-1. Epub 2021 Sep 6.

Abstract

BACKGROUND

The diagnosis of facioscapulohumeral muscular dystrophy (FSHD) can be challenging in patients not displaying the classical phenotype or with atypical clinical features. Despite the identification by magnetic resonance imaging (MRI) of selective patterns of muscle involvement, their specificity and added diagnostic value are unknown.

METHODS

We aimed to identify the radiological features more useful to distinguish FSHD from other myopathies and test the diagnostic accuracy of MRI. A retrospective cohort of 295 patients (187 FSHD, 108 non-FSHD) studied by upper and lower-limb muscle MRI was analyzed. Scans were evaluated for the presence of 15 radiological features. A random forest machine learning algorithm was used to identify the most relevant for FSHD diagnosis. Different patterns were created by their combination and diagnostic accuracy of each of them was tested.

RESULTS

The combination of trapezius involvement and bilateral subscapularis muscle sparing achieved the best diagnostic accuracy (0.89, 95% Confidence Interval [0.85-0.92]) with 0.90 [0.85-0.94] sensitivity and 0.88 [0.80-0.93] specificity. This pattern correctly identified 91% atypical FSHD patients of our cohort. The combination of trapezius involvement, bilateral subscapularis and iliopsoas sparing and asymmetric involvement of upper and lower-limb muscles was pathognomonic for FSHD, yielding a specificity of 0.99 [0.95-1.00].

CONCLUSIONS

We identified MRI patterns that showed a high diagnostic power in promptly discriminating FSHD from other muscle disorders, with comparable performance irrespective of typical or atypical clinical features. Upper girdle in addition to lower-limb muscle imaging should be extensively implemented in the diagnostic workup to support or exclude a diagnosis of FSHD.

摘要

背景

对于未表现出典型表型或具有非典型临床特征的患者,面肩肱型肌营养不良(FSHD)的诊断可能具有挑战性。尽管通过磁共振成像(MRI)识别出了肌肉受累的选择性模式,但其特异性和附加诊断价值尚不清楚。

方法

我们旨在确定对区分FSHD与其他肌病更有用的放射学特征,并测试MRI的诊断准确性。分析了一个回顾性队列,该队列包括295例接受上肢和下肢肌肉MRI检查的患者(187例FSHD,108例非FSHD)。对扫描结果评估15种放射学特征的存在情况。使用随机森林机器学习算法来识别与FSHD诊断最相关的特征。通过它们的组合创建不同模式,并测试每种模式的诊断准确性。

结果

斜方肌受累和双侧肩胛下肌 sparing的组合实现了最佳诊断准确性(0.89,95%置信区间[0.85 - 0.92]),敏感性为0.90 [0.85 - 0.94],特异性为0.88 [0.80 - 0.93]。这种模式正确识别了我们队列中91%的非典型FSHD患者。斜方肌受累、双侧肩胛下肌和髂腰肌 sparing以及上肢和下肢肌肉不对称受累的组合对FSHD具有诊断意义,特异性为0.99 [0.95 - 1.00]。

结论

我们确定了MRI模式,这些模式在迅速区分FSHD与其他肌肉疾病方面显示出高诊断能力,无论临床特征是典型还是非典型,其表现相当。除下肢肌肉成像外,上肢带肌肉成像也应广泛应用于诊断检查中,以支持或排除FSHD的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验