Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China.
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
J Colloid Interface Sci. 2022 Jan 15;606(Pt 2):1055-1063. doi: 10.1016/j.jcis.2021.08.050. Epub 2021 Aug 11.
Ammonia (NH) plays an important role in agriculture and industry. The industry-scale production mainly depends on the Haber-Bosch process suffering from issues of environment pollution and energy consumption. Electrochemical reduction can degrade nitrite (NO) pollutants in the environment and convert it into more valuable NH. Here, NiP nanosheet array on nickel foam is proposed as a 3D electrocatalyst for high-efficiency electrohydrogenation of NO to NH under ambient reaction conditions. When tested in 0.1 M phosphate buffer saline with 200 ppm NO, such NiP/NF is able to obtain a large NH yield rate of 2692.2 ± 92.1 μg h cm (3282.9 ± 112.3 μg h mg), a high Faradic efficiency of 90.2 ± 3.0%, and selectivity of 87.0 ± 1.7% at -0.3 V versus a reversible hydrogen electrode. After 10 h of electrocatalytic reduction, the conversion rate of NO achieves near 100%. The catalytic mechanism is further investigated by density functional theory calculations.
氨(NH)在农业和工业中起着重要作用。工业规模的生产主要依赖于哈伯-博世工艺,但该工艺存在环境污染和能源消耗的问题。电化学还原可以降解环境中的亚硝酸盐(NO)污染物,并将其转化为更有价值的 NH。在这里,我们提出镍磷纳米片阵列负载在泡沫镍上作为 3D 电催化剂,在环境反应条件下高效电还原 NO 生成 NH。在含有 200ppmNO 的 0.1M 磷酸盐缓冲溶液中进行测试时,这种 NiP/NF 在 -0.3V 相对于可逆氢电极时能够获得 2692.2±92.1μg h cm(3282.9±112.3μg h mg)的大 NH 产率、90.2±3.0%的高法拉第效率和 87.0±1.7%的选择性。电催化还原 10 小时后,NO 的转化率接近 100%。通过密度泛函理论计算进一步研究了催化机制。