Suppr超能文献

人表皮生长因子受体 2 阳性早期乳腺癌的治疗:现有及未来的治疗方法。

The management of HER2-positive early breast cancer: Current and future therapies.

机构信息

Garvan Institute of Medical Research, Sydney, Australia.

St Vincent's Clinical School, University of New South Wales, Sydney, Australia.

出版信息

Asia Pac J Clin Oncol. 2021 Sep;17 Suppl 6:3-12. doi: 10.1111/ajco.13655.

Abstract

Advances in human epidermal growth factor receptor 2 (HER2)-directed therapies have revolutionised the care of patients with HER2-positive breast cancer. While adjuvant trastuzumab in combination with chemotherapy has dramatically improved the prognosis for patients with early-stage disease, up to a quarter of patients will develop recurrent disease. The standard-of-care treatment paradigm has evolved with the introduction of newer HER2-directed therapies and increasing use of neoadjuvant systemic therapy, the latter providing us with important functional data to HER2-directed therapies and impacting subsequent adjuvant therapy decisions. However, these new strategies come at a cost of increased toxicity and economic burden, and only a subset of patients benefit from such approaches. Thus, ongoing work is required to identify predictive biomarkers of response, to de-escalate treatment in patients who may do just as well with less therapy, and new therapeutic approaches for patients who do not respond to currently used therapies. In this review, we will examine the current therapeutic landscape, summarise the latest evidence, and list the current treatment algorithms for early stage HER2-positive breast cancer.

摘要

人表皮生长因子受体 2(HER2)靶向治疗的进展彻底改变了 HER2 阳性乳腺癌患者的治疗方式。曲妥珠单抗联合化疗的辅助治疗显著改善了早期疾病患者的预后,但多达四分之一的患者会出现疾病复发。随着新型 HER2 靶向治疗药物的引入和新辅助全身治疗的广泛应用,标准治疗模式不断发展,后者为我们提供了关于 HER2 靶向治疗的重要功能数据,并影响了随后的辅助治疗决策。然而,这些新策略带来了毒性增加和经济负担增加的问题,而且只有一部分患者从这些方法中获益。因此,需要进行持续的工作来识别反应的预测生物标志物,以便为那些可能通过较少治疗就能获得同样疗效的患者减轻治疗强度,并为那些对现有治疗方法无反应的患者提供新的治疗方法。在这篇综述中,我们将探讨当前的治疗现状,总结最新的证据,并列出早期 HER2 阳性乳腺癌的当前治疗算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验