尽管啮齿动物的上皮钠离子通道同工型发生了显著的进化假基因化和外显子融合,但仍存在两种功能性同工型。
Two Functional Epithelial Sodium Channel Isoforms Are Present in Rodents despite Pronounced Evolutionary Pseudogenization and Exon Fusion.
机构信息
School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium.
出版信息
Mol Biol Evol. 2021 Dec 9;38(12):5704-5725. doi: 10.1093/molbev/msab271.
The epithelial sodium channel (ENaC) plays a key role in salt and water homeostasis in tetrapod vertebrates. There are four ENaC subunits (α, β, γ, δ), forming heterotrimeric αβγ- or δβγ-ENaCs. Although the physiology of αβγ-ENaC is well understood, for decades the field has stalled with respect to δβγ-ENaC due to the lack of mammalian model organisms. The SCNN1D gene coding for δ-ENaC was previously believed to be absent in rodents, hindering studies using standard laboratory animals. We analyzed all currently available rodent genomes and discovered that SCNN1D is present in rodents but was independently lost in five rodent lineages, including the Muridae (mice and rats). The independent loss of SCNN1D in rodent lineages may be constrained by phylogeny and taxon-specific adaptation to dry habitats, however habitat aridity does not provide a selection pressure for maintenance of SCNN1D across Rodentia. A fusion of two exons coding for a structurally flexible region in the extracellular domain of δ-ENaC appeared in the Hystricognathi (a group that includes guinea pigs). This conserved pattern evolved at least 41 Ma and represents a new autapomorphic feature for this clade. Exon fusion does not impair functionality of guinea pig (Cavia porcellus) δβγ-ENaC expressed in Xenopus oocytes. Electrophysiological characterization at the whole-cell and single-channel level revealed conserved biophysical features and mechanisms controlling guinea pig αβγ- and δβγ-ENaC function as compared with human orthologs. Guinea pigs therefore represent commercially available mammalian model animals that will help shed light on the physiological function of δ-ENaC.
上皮钠离子通道(ENaC)在四足脊椎动物的盐和水动态平衡中起着关键作用。ENaC 有四个亚基(α、β、γ、δ),形成异三聚体的 αβγ-或 δβγ-ENaC。尽管 αβγ-ENaC 的生理学已得到很好的理解,但由于缺乏哺乳动物模型生物,该领域在 δβγ-ENaC 方面停滞了几十年。编码 δ-ENaC 的 SCNN1D 基因以前被认为在啮齿动物中不存在,这阻碍了使用标准实验动物进行的研究。我们分析了所有现有的啮齿动物基因组,发现 SCNN1D 存在于啮齿动物中,但在包括鼠科(老鼠和大鼠)在内的五个啮齿动物谱系中独立丢失。SCNN1D 在啮齿动物谱系中的独立丢失可能受到系统发育和特定于分类群的对干燥栖息地的适应的限制,然而,栖息地干旱并没有为维持整个啮齿动物目中的 SCNN1D 提供选择压力。在 Hystricognathi(包括豚鼠在内的一个群体)中,δ-ENaC 细胞外结构域中一个结构灵活区域的两个外显子发生融合。这种保守模式至少在 4100 万年前进化而来,代表了这个分支的一个新的独特特征。外显子融合不会损害豚鼠(Cavia porcellus)δβγ-ENaC 在非洲爪蟾卵母细胞中的表达功能。全细胞和单通道水平的电生理特性表明,与人类同源物相比,豚鼠 αβγ-和 δβγ-ENaC 的功能具有保守的生物物理特性和调控机制。因此,豚鼠是商业上可用的哺乳动物模型动物,将有助于阐明 δ-ENaC 的生理功能。