School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig University Giessen, 35390 Giessen, Germany.
School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
J Biol Chem. 2019 Aug 16;294(33):12507-12520. doi: 10.1074/jbc.RA119.008255. Epub 2019 Jun 27.
The limited sodium availability of freshwater and terrestrial environments was a major physiological challenge during vertebrate evolution. The epithelial sodium channel (ENaC) is present in the apical membrane of sodium-absorbing vertebrate epithelia and evolved as part of a machinery for efficient sodium conservation. ENaC belongs to the degenerin/ENaC protein family and is the only member that opens without an external stimulus. We hypothesized that ENaC evolved from a proton-activated sodium channel present in ionocytes of freshwater vertebrates and therefore investigated whether such ancestral traits are present in ENaC isoforms of the aquatic pipid frog Using whole-cell and single-channel electrophysiology of oocytes expressing ENaC isoforms assembled from αβγ- or δβγ-subunit combinations, we demonstrate that δβγ-ENaC is profoundly activated by extracellular acidification within biologically relevant ranges (pH 8.0-6.0). This effect was not observed in αβγ-ENaC or human ENaC orthologs. We show that protons interfere with allosteric ENaC inhibition by extracellular sodium ions, thereby increasing the probability of channel opening. Using homology modeling of ENaC structure and site-directed mutagenesis, we identified a cleft region within the extracellular loop of the δ-subunit that contains several acidic amino acid residues that confer proton-sensitivity and enable allosteric inhibition by extracellular sodium ions. We propose that δβγ-ENaC can serve as a model for investigating ENaC transformation from a proton-activated toward a constitutively-active ion channel. Such transformation might have occurred during the evolution of tetrapod vertebrates to enable bulk sodium absorption during the water-to-land transition.
淡水和陆地环境中钠离子的有限可用性是脊椎动物进化过程中的主要生理挑战。上皮钠通道(ENaC)存在于钠吸收脊椎动物上皮的顶膜中,是一种高效钠离子保存机制的一部分。ENaC 属于 DEG/ENaC 蛋白家族,是唯一无需外部刺激即可打开的成员。我们假设 ENaC 是从淡水脊椎动物的离子细胞中存在的质子激活的钠通道进化而来的,因此研究了这种祖征是否存在于水生 pipid 青蛙的 ENaC 同工型中。我们使用表达由αβγ或δβγ亚基组合组装的 ENaC 同工型的卵母细胞的全细胞和单通道电生理学,证明δβγ-ENaC 在生物学相关范围内(pH 8.0-6.0)被细胞外酸化强烈激活。这种效应在αβγ-ENaC 或人类 ENaC 同源物中未观察到。我们表明,质子干扰细胞外钠离子对 ENaC 的变构抑制,从而增加通道打开的概率。我们使用 ENaC 结构的同源建模和定点突变,鉴定了δ亚基细胞外环中的一个裂隙区域,该区域包含几个酸性氨基酸残基,赋予质子敏感性并允许细胞外钠离子进行变构抑制。我们提出,δβγ-ENaC 可以作为研究 ENaC 从质子激活向组成型激活离子通道转变的模型。这种转变可能发生在四足脊椎动物的进化过程中,以使它们在从水到陆的过渡过程中能够大量吸收钠离子。