Suppr超能文献

利用伽马相机构建人工神经网络预测模型,以评估肾小球滤过率正常或异常阶段。

Artificial neural network for the prediction model of glomerular filtration rate to estimate the normal or abnormal stages of kidney using gamma camera.

机构信息

Department of Physics, University of Rajshahi, Rajshahi, 6205, Bangladesh.

Kyushu University, Fukuoka, Japan.

出版信息

Ann Nucl Med. 2021 Dec;35(12):1342-1352. doi: 10.1007/s12149-021-01676-7. Epub 2021 Sep 7.

Abstract

OBJECTIVE

Chronic kidney disease (CKD) is evaluated based on glomerular filtration rate (GFR) using a gamma camera in the nuclear medicine center or hospital in a routine procedure, but the gamma camera does not provide the accurate stages of the diseases. Therefore, this research aimed to find out the normal or abnormal stages of CKD based on the value of GFR using an artificial neural network (ANN).

METHODS

Two hundred fifty (Training 188, Testing 62) kidney patients who underwent the ultrasonography test to diagnose the renal test in our nuclear medical centre were scanned using gamma camera. The patients were injected with Tc-DTPA before the scanning procedure. After pushing the syringe into the patient's vein, the pre-syringe and post syringe radioactive counts were calculated using the gamma camera. The artificial neural network uses the softmax function with cross-entropy loss to diagnose CKD normal or abnormal labels depending on the value of GFR in the output layer.

RESULTS

The results showed that the accuracy of the proposed ANN model was 99.20% for K-fold cross-validation. The sensitivity and specificity were 99.10% and 99.20%, respectively. The Area under the curve (AUC) was 0.9994.

CONCLUSION

The proposed model using an artificial neural network can classify the normal or abnormal stages of CKD. After implementing the proposed model clinically, it may upgrade the gamma camera to diagnose the normal or abnormal stages of the CKD with an appropriate GFR value.

摘要

目的

在核医学中心或医院,通过伽马相机以肾小球滤过率(GFR)评估慢性肾脏病(CKD),但伽马相机无法提供疾病的确切分期。因此,本研究旨在通过人工神经网络(ANN)发现基于 GFR 值的 CKD 的正常或异常分期。

方法

在我们的核医学中心,对 250 例(训练 188 例,测试 62 例)接受超声检查以诊断肾脏检查的肾病患者使用伽马相机进行扫描。在扫描前,患者被注射 Tc-DTPA。将注射器推入患者静脉后,使用伽马相机计算预注射器和后注射器放射性计数。人工神经网络使用带有交叉熵损失的 softmax 函数,根据输出层中 GFR 的值诊断 CKD 的正常或异常标签。

结果

结果表明,所提出的 ANN 模型的 K 折交叉验证准确率为 99.20%。敏感性和特异性分别为 99.10%和 99.20%,曲线下面积(AUC)为 0.9994。

结论

所提出的基于人工神经网络的模型可以对 CKD 的正常或异常分期进行分类。在临床上实施该模型后,它可以通过适当的 GFR 值升级伽马相机来诊断 CKD 的正常或异常分期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验