Suppr超能文献

基于径向基函数神经网络评估慢性肾脏病患者的肾小球滤过率

Evaluation of Glomerular Filtration Rate in Chronic Kidney Disease by Radial Basis Function Neural Network.

作者信息

Xu Jing, Guo Buyuan, Liu Chunyan

机构信息

Yantai Yuhuangding Hospital, Yantai City, Shandong Province, China.

The Second Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, China.

出版信息

Transplant Proc. 2020 Apr;52(3):748-753. doi: 10.1016/j.transproceed.2020.01.008. Epub 2020 Mar 19.

Abstract

OBJECTIVE

To develop a radial basis function (RBF) neural network and investigate its performance in the estimation of glomerular filtration rate (GFR) for patients with chronic kidney disease.

METHODS

A total of 651 patients with chronic kidney disease were enrolled in this study. The GFR measured by Tc-DTPA renal dynamic imaging was used as the standard GFR. The RBF neural network model was established and the performance prediction GFR value was verified. It was found that the RBF neural network could better evaluate the GFR of patients with chronic kidney disease stage 2-5, which is superior to the Modification of Diet in Renal Disease equation.

CONCLUSIONS

The RBF neural network evaluated GFR significantly for patients with chronic kidney disease stages 2-5, and it showed no difference with the Tc-DTPA renal dynamic imaging method, and it can be used for estimated GFR evaluation.

摘要

目的

构建径向基函数(RBF)神经网络并研究其在慢性肾脏病患者肾小球滤过率(GFR)估计中的性能。

方法

本研究共纳入651例慢性肾脏病患者。将经Tc-DTPA肾动态显像测得的GFR作为标准GFR。建立RBF神经网络模型并验证其预测GFR值的性能。发现RBF神经网络能更好地评估2-5期慢性肾脏病患者的GFR,优于肾脏病饮食改良公式。

结论

RBF神经网络对2-5期慢性肾脏病患者的GFR评估具有显著意义,与Tc-DTPA肾动态显像法无差异,可用于GFR估计评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验