Suppr超能文献

通过超维相空间中的局部化学势合成氧化钇锰时的选择性

Selectivity in Yttrium Manganese Oxide Synthesis via Local Chemical Potentials in Hyperdimensional Phase Space.

作者信息

Todd Paul K, McDermott Matthew J, Rom Christopher L, Corrao Adam A, Denney Jonathan J, Dwaraknath Shyam S, Khalifah Peter G, Persson Kristin A, Neilson James R

机构信息

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.

Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

出版信息

J Am Chem Soc. 2021 Sep 22;143(37):15185-15194. doi: 10.1021/jacs.1c06229. Epub 2021 Sep 7.

Abstract

In sharp contrast to molecular synthesis, materials synthesis is generally presumed to lack selectivity. The few known methods of designing selectivity in solid-state reactions have limited scope, such as topotactic reactions or strain stabilization. This contribution describes a general approach for searching large chemical spaces to identify selective reactions. This novel approach explains the ability of a nominally "innocent" NaCO precursor to enable the metathesis synthesis of single-phase YMnO: an outcome that was previously only accomplished at extreme pressures and which cannot be achieved with closely related precursors of LiCO and KCO under identical conditions. By calculating the required change in chemical potential across all possible reactant-product interfaces in an expanded chemical space including Y, Mn, O, alkali metals, and halogens, using thermodynamic parameters obtained from density functional theory calculations, we identify reactions that minimize the thermodynamic competition from intermediates. In this manner, only the Na-based intermediates minimize the distance in the hyperdimensional chemical potential space to YMnO, thus providing selective access to a phase which was previously thought to be metastable. Experimental evidence validating this mechanism for pathway-dependent selectivity is provided by intermediates identified from synchrotron-based crystallographic analysis. This approach of calculating chemical potential distances in hyperdimensional compositional spaces provides a general method for designing selective solid-state syntheses that will be useful for gaining access to metastable phases and for identifying reaction pathways that can reduce the synthesis temperature, and cost, of technological materials.

摘要

与分子合成形成鲜明对比的是,材料合成通常被认为缺乏选择性。在固态反应中,少数已知的设计选择性的方法适用范围有限,例如拓扑化学反应或应变稳定化。本文介绍了一种在大型化学空间中搜索以识别选择性反应的通用方法。这种新方法解释了一种名义上“无害”的NaCO前驱体能够实现单相YMnO复分解合成的能力:这一结果以前仅在极端压力下才能实现,并且在相同条件下,使用LiCO和KCO的密切相关前驱体无法实现。通过使用从密度泛函理论计算获得的热力学参数,计算包括Y、Mn、O、碱金属和卤素在内的扩展化学空间中所有可能反应物 - 产物界面处化学势的所需变化,我们确定了能使来自中间体的热力学竞争最小化的反应。通过这种方式,只有基于Na的中间体在超维化学势空间中使到YMnO的距离最小化,从而提供了对以前被认为是亚稳相的选择性合成途径。从基于同步加速器的晶体学分析中鉴定出的中间体提供了验证这种途径依赖性选择性机制的实验证据。这种在超维组成空间中计算化学势距离的方法提供了一种设计选择性固态合成的通用方法,这将有助于获得亚稳相,并识别可以降低技术材料合成温度和成本的反应途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验