Zeng Yan, Szymanski Nathan J, He Tanjin, Jun KyuJung, Gallington Leighanne C, Huo Haoyan, Bartel Christopher J, Ouyang Bin, Ceder Gerbrand
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA 94720, USA.
Sci Adv. 2024 Jan 19;10(3):eadj5431. doi: 10.1126/sciadv.adj5431. Epub 2024 Jan 17.
Metastable polymorphs often result from the interplay between thermodynamics and kinetics. Despite advances in predictive synthesis for solution-based techniques, there remains a lack of methods to design solid-state reactions targeting metastable materials. Here, we introduce a theoretical framework to predict and control polymorph selectivity in solid-state reactions. This framework presents reaction energy as a rarely used handle for polymorph selection, which influences the role of surface energy in promoting the nucleation of metastable phases. Through in situ characterization and density functional theory calculations on two distinct synthesis pathways targeting LiTiOPO, we demonstrate how precursor selection and its effect on reaction energy can effectively be used to control which polymorph is obtained from solid-state synthesis. A general approach is outlined to quantify the conditions under which metastable polymorphs are experimentally accessible. With comparison to historical data, this approach suggests that using appropriate precursors could enable targeted materials synthesis across diverse chemistries through selective polymorph nucleation.
亚稳多晶型物通常源于热力学和动力学之间的相互作用。尽管基于溶液的技术在预测合成方面取得了进展,但仍然缺乏设计针对亚稳材料的固态反应的方法。在此,我们引入一个理论框架来预测和控制固态反应中的多晶型选择性。该框架将反应能量作为一种很少使用的多晶型选择手段,它影响表面能在促进亚稳相形核中的作用。通过对针对LiTiOPO的两条不同合成途径进行原位表征和密度泛函理论计算,我们展示了如何有效利用前驱体选择及其对反应能量的影响来控制从固态合成中获得哪种多晶型物。概述了一种通用方法来量化实验可获得亚稳多晶型物的条件。与历史数据相比,该方法表明使用合适的前驱体可以通过选择性多晶型成核实现跨多种化学体系的目标材料合成。