Division of Global HIV & TB, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.
Division of HIV, Infectious Diseases and Global Medicine at Zuckerberg San Francisco General Hospital and Trauma Center, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America.
PLoS Med. 2021 Sep 7;18(9):e1003739. doi: 10.1371/journal.pmed.1003739. eCollection 2021 Sep.
BACKGROUND: Among people living with HIV (PLHIV), more flexible and sensitive tuberculosis (TB) screening tools capable of detecting both symptomatic and subclinical active TB are needed to (1) reduce morbidity and mortality from undiagnosed TB; (2) facilitate scale-up of tuberculosis preventive therapy (TPT) while reducing inappropriate prescription of TPT to PLHIV with subclinical active TB; and (3) allow for differentiated HIV-TB care. METHODS AND FINDINGS: We used Botswana XPRES trial data for adult HIV clinic enrollees collected during 2012 to 2015 to develop a parsimonious multivariable prognostic model for active prevalent TB using both logistic regression and random forest machine learning approaches. A clinical score was derived by rescaling final model coefficients. The clinical score was developed using southern Botswana XPRES data and its accuracy validated internally, using northern Botswana data, and externally using 3 diverse cohorts of antiretroviral therapy (ART)-naive and ART-experienced PLHIV enrolled in XPHACTOR, TB Fast Track (TBFT), and Gugulethu studies from South Africa (SA). Predictive accuracy of the clinical score was compared with the World Health Organization (WHO) 4-symptom TB screen. Among 5,418 XPRES enrollees, 2,771 were included in the derivation dataset; 67% were female, median age was 34 years, median CD4 was 240 cells/μL, 189 (7%) had undiagnosed prevalent TB, and characteristics were similar between internal derivation and validation datasets. Among XPHACTOR, TBFT, and Gugulethu cohorts, median CD4 was 400, 73, and 167 cells/μL, and prevalence of TB was 5%, 10%, and 18%, respectively. Factors predictive of TB in the derivation dataset and selected for the clinical score included male sex (1 point), ≥1 WHO TB symptom (7 points), smoking history (1 point), temperature >37.5°C (6 points), body mass index (BMI) <18.5kg/m2 (2 points), and severe anemia (hemoglobin <8g/dL) (3 points). Sensitivity using WHO 4-symptom TB screen was 73%, 80%, 94%, and 94% in XPRES, XPHACTOR, TBFT, and Gugulethu cohorts, respectively, but increased to 88%, 87%, 97%, and 97%, when a clinical score of ≥2 was used. Negative predictive value (NPV) also increased 1%, 0.3%, 1.6%, and 1.7% in XPRES, XPHACTOR, TBFT, and Gugulethu cohorts, respectively, when the clinical score of ≥2 replaced WHO 4-symptom TB screen. Categorizing risk scores into low (<2), moderate (2 to 10), and high-risk categories (>10) yielded TB prevalence of 1%, 1%, 2%, and 6% in the lowest risk group and 33%, 22%, 26%, and 32% in the highest risk group for XPRES, XPHACTOR, TBFT, and Gugulethu cohorts, respectively. At clinical score ≥2, the number needed to screen (NNS) ranged from 5.0 in Gugulethu to 11.0 in XPHACTOR. Limitations include that the risk score has not been validated in resource-rich settings and needs further evaluation and validation in contemporary cohorts in Africa and other resource-constrained settings. CONCLUSIONS: The simple and feasible clinical score allowed for prioritization of sensitivity and NPV, which could facilitate reductions in mortality from undiagnosed TB and safer administration of TPT during proposed global scale-up efforts. Differentiation of risk by clinical score cutoff allows flexibility in designing differentiated HIV-TB care to maximize impact of available resources.
背景:在艾滋病毒感染者(PLHIV)中,需要更灵活和敏感的结核病(TB)筛查工具,以(1)降低未确诊 TB 的发病率和死亡率;(2)在扩大结核病预防性治疗(TPT)的同时,减少对有亚临床活动性 TB 的 PLHIV 不适当的 TPT 处方;(3)允许对 HIV-TB 进行差异化护理。
方法和发现:我们使用博茨瓦纳 XPRES 试验数据,该数据来自 2012 年至 2015 年期间成年 HIV 诊所的参与者,使用逻辑回归和随机森林机器学习方法开发了一个用于检测活动性现患 TB 的简约多变量预测模型。通过重新调整最终模型系数来得出临床评分。该临床评分是利用南部博茨瓦纳 XPRES 数据开发的,并在内部使用北部博茨瓦纳数据进行验证,在外部使用来自南非(SA)的 XPHACTOR、TB Fast Track(TBFT)和 Gugulethu 研究中的 3 个不同队列的抗逆转录病毒治疗(ART)初治和经验丰富的 PLHIV 进行验证。比较了临床评分与世界卫生组织(WHO)的 4 症状 TB 筛查的预测准确性。在 5418 名 XPRES 参与者中,有 2771 人纳入了推导数据集;67%为女性,中位年龄为 34 岁,中位 CD4 为 240 个细胞/μL,189 人(7%)患有未确诊的现患 TB,内部推导和验证数据集之间的特征相似。在 XPHACTOR、TBFT 和 Gugulethu 队列中,中位 CD4 分别为 400、73 和 167 个细胞/μL,TB 的患病率分别为 5%、10%和 18%。在推导数据集中预测 TB 的因素,包括男性(1 分)、≥1 个 WHO TB 症状(7 分)、吸烟史(1 分)、体温>37.5°C(6 分)、BMI<18.5kg/m2(2 分)和严重贫血(血红蛋白<8g/dL)(3 分)。在 XPRES、XPHACTOR、TBFT 和 Gugulethu 队列中,使用 WHO 4 症状 TB 筛查的敏感性分别为 73%、80%、94%和 94%,但当使用临床评分≥2 时,敏感性分别提高到 88%、87%、97%和 97%。在 XPRES、XPHACTOR、TBFT 和 Gugulethu 队列中,当临床评分≥2 替代 WHO 4 症状 TB 筛查时,NPV 分别增加了 1%、0.3%、1.6%和 1.7%。将风险评分分为低(<2)、中(2 至 10)和高风险(>10)类别,在 XPRES、XPHACTOR、TBFT 和 Gugulethu 队列中,最低风险组的 TB 患病率分别为 1%、1%、1%和 6%,最高风险组的 TB 患病率分别为 33%、22%、26%和 32%。在临床评分≥2 时,NNS 范围从 Gugulethu 的 5.0 到 XPHACTOR 的 11.0。局限性包括该风险评分尚未在资源丰富的环境中得到验证,需要在非洲和其他资源有限的环境中的当代队列中进一步评估和验证。
结论:简单可行的临床评分允许对敏感性和 NPV 进行优先级排序,这可以降低未确诊 TB 的死亡率和在拟议的全球扩大努力中更安全地管理 TPT。通过临床评分临界值对风险进行区分,为最大限度地利用现有资源,灵活设计差异化的 HIV-TB 护理提供了灵活性。
Cochrane Database Syst Rev. 2024-6-11
Cochrane Database Syst Rev. 2016-5-10
Cochrane Database Syst Rev. 2022-7-22
Cochrane Database Syst Rev. 2024-12-16
Fam Med Community Health. 2020-2-16