College of Information Science and Engineering, Xinjiang University, Urumqi, China.
PLoS One. 2021 Sep 7;16(9):e0257013. doi: 10.1371/journal.pone.0257013. eCollection 2021.
The cardinal symptoms of some ophthalmic diseases observed through exceptional retinal blood vessels, such as retinal vein occlusion, diabetic retinopathy, etc. The advanced deep learning models used to obtain morphological and structural information of blood vessels automatically are conducive to the early treatment and initiative prevention of ophthalmic diseases. In our work, we propose a hierarchical dilation convolutional network (HDC-Net) to extract retinal vessels in a pixel-to-pixel manner. It utilizes the hierarchical dilation convolution (HDC) module to capture the fragile retinal blood vessels usually neglected by other methods. An improved residual dual efficient channel attention (RDECA) module can infer more delicate channel information to reinforce the discriminative capability of the model. The structured Dropblock can help our HDC-Net model to solve the network overfitting effectively. From a holistic perspective, the segmentation results obtained by HDC-Net are superior to other deep learning methods on three acknowledged datasets (DRIVE, CHASE-DB1, STARE), the sensitivity, specificity, accuracy, f1-score and AUC score are {0.8252, 0.9829, 0.9692, 0.8239, 0.9871}, {0.8227, 0.9853, 0.9745, 0.8113, 0.9884}, and {0.8369, 0.9866, 0.9751, 0.8385, 0.9913}, respectively. It surpasses most other advanced retinal vessel segmentation models. Qualitative and quantitative analysis demonstrates that HDC-Net can fulfill the task of retinal vessel segmentation efficiently and accurately.
一些眼科疾病的主要症状可通过异常视网膜血管观察到,如视网膜静脉阻塞、糖尿病性视网膜病变等。用于自动获取血管形态和结构信息的先进深度学习模型有助于眼科疾病的早期治疗和主动预防。在我们的工作中,我们提出了一种分层扩张卷积网络(HDC-Net),以逐像素的方式提取视网膜血管。它利用分层扩张卷积(HDC)模块来捕获通常被其他方法忽略的脆弱视网膜血管。改进的残差双有效通道注意力(RDECA)模块可以推断出更精细的通道信息,从而增强模型的判别能力。结构化的 Dropblock 有助于我们的 HDC-Net 模型有效地解决网络过拟合问题。从整体上看,HDC-Net 在三个公认的数据集(DRIVE、CHASE-DB1、STARE)上的分割结果优于其他深度学习方法,其灵敏度、特异性、准确性、f1 分数和 AUC 分数分别为{0.8252, 0.9829, 0.9692, 0.8239, 0.9871}、{0.8227, 0.9853, 0.9745, 0.8113, 0.9884}和{0.8369, 0.9866, 0.9751, 0.8385, 0.9913}。它超过了大多数其他先进的视网膜血管分割模型。定性和定量分析表明,HDC-Net 可以高效、准确地完成视网膜血管分割任务。