Suppr超能文献

基于曲线波变换和多结构元素形态学重建的视网膜图像分析。

Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction.

机构信息

Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52240, USA.

出版信息

IEEE Trans Biomed Eng. 2011 May;58(5):1183-92. doi: 10.1109/TBME.2010.2097599. Epub 2010 Dec 10.

Abstract

Retinal images can be used in several applications, such as ocular fundus operations as well as human recognition. Also, they play important roles in detection of some diseases in early stages, such as diabetes, which can be performed by comparison of the states of retinal blood vessels. Intrinsic characteristics of retinal images make the blood vessel detection process difficult. Here, we proposed a new algorithm to detect the retinal blood vessels effectively. Due to the high ability of the curvelet transform in representing the edges, modification of curvelet transform coefficients to enhance the retinal image edges better prepares the image for the segmentation part. The directionality feature of the multistructure elements method makes it an effective tool in edge detection. Hence, morphology operators using multistructure elements are applied to the enhanced image in order to find the retinal image ridges. Afterward, morphological operators by reconstruction eliminate the ridges not belonging to the vessel tree while trying to preserve the thin vessels unchanged. In order to increase the efficiency of the morphological operators by reconstruction, they were applied using multistructure elements. A simple thresholding method along with connected components analysis (CCA) indicates the remained ridges belonging to vessels. In order to utilize CCA more efficiently, we locally applied the CCA and length filtering instead of considering the whole image. Experimental results on a known database, DRIVE, and achieving to more than 94% accuracy in about 50 s for blood vessel detection, proved that the blood vessels can be effectively detected by applying our method on the retinal images.

摘要

视网膜图像可应用于多种领域,如眼部眼底手术和人类识别。此外,它们在早期疾病的检测中也起着重要作用,如糖尿病,通过比较视网膜血管的状态就可以进行检测。视网膜图像的固有特性使得血管检测过程变得困难。在这里,我们提出了一种新的算法,可以有效地检测视网膜血管。由于曲波变换在表示边缘方面具有很强的能力,因此修改曲波变换系数可以更好地增强视网膜图像的边缘,从而为分割部分做好准备。多结构元素方法的方向性特征使其成为边缘检测的有效工具。因此,应用多结构元素的形态学算子来增强图像,以找到视网膜图像的脊线。然后,通过重建的形态学算子来消除不属于血管树的脊线,同时试图保持细血管不变。为了提高重建形态学算子的效率,我们使用多结构元素来应用它们。一个简单的阈值方法结合连通分量分析(CCA)指示属于血管的剩余脊线。为了更有效地利用 CCA,我们在局部应用 CCA 和长度滤波,而不是考虑整个图像。在一个已知的数据库 DRIVE 上的实验结果表明,我们的方法可以有效地检测视网膜图像中的血管,大约 50 秒内的准确率超过 94%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验