Suppr超能文献

特斯拉自动驾驶脱手时自然扫视行为模型。

A model for naturalistic glance behavior around Tesla Autopilot disengagements.

机构信息

MIT Agelab, Massachusetts Institute of Technology, 1 Amherst Street, Cambridge, MA 02142, USA.

出版信息

Accid Anal Prev. 2021 Oct;161:106348. doi: 10.1016/j.aap.2021.106348. Epub 2021 Sep 4.

Abstract

OBJECTIVE

We present a model for visual behavior that can simulate the glance pattern observed around driver-initiated, non-critical disengagements of Tesla's Autopilot (AP) in naturalistic highway driving.

BACKGROUND

Drivers may become inattentive when using partially-automated driving systems. The safety effects associated with inattention are unknown until we have a quantitative reference on how visual behavior changes with automation.

METHODS

The model is based on glance data from 290 human initiated AP disengagement epochs. Glance duration and transition were modelled with Bayesian Generalized Linear Mixed models.

RESULTS

The model replicates the observed glance pattern across drivers. The model's components show that off-road glances were longer with AP active than without and that their frequency characteristics changed. Driving-related off-road glances were less frequent with AP active than in manual driving, while non-driving related glances to the down/center-stack areas were the most frequent and the longest (22% of the glances exceeded 2 s). Little difference was found in on-road glance duration.

CONCLUSION

Visual behavior patterns change before and after AP disengagement. Before disengagement, drivers looked less on road and focused more on non-driving related areas compared to after the transition to manual driving. The higher proportion of off-road glances before disengagement to manual driving were not compensated by longer glances ahead.

APPLICATION

The model can be used as a reference for safety assessment or to formulate design targets for driver management systems.

摘要

目的

我们提出了一种视觉行为模型,该模型可以模拟在自然驾驶条件下,特斯拉自动驾驶(AP)启动时非关键脱离时观察到的驾驶员扫视模式。

背景

当使用部分自动化驾驶系统时,驾驶员可能会变得不专心。在我们对自动化如何改变视觉行为有一个定量参考之前,我们还不知道与不专心相关的安全影响。

方法

该模型基于 290 次人为启动的 AP 脱离期的扫视数据。采用贝叶斯广义线性混合模型对扫视持续时间和转换进行建模。

结果

该模型在不同驾驶员之间再现了观察到的扫视模式。模型的组成部分表明,AP 激活时的路边扫视时间比不激活时长,而且它们的频率特征发生了变化。AP 激活时的驾驶相关路边扫视频率比手动驾驶时低,而与驾驶无关的扫视到下/中心堆栈区域的频率最高且时间最长(22%的扫视时间超过 2 秒)。在道路上的扫视持续时间上差异不大。

结论

AP 脱离前后,视觉行为模式发生变化。在脱离之前,与切换到手动驾驶后相比,驾驶员的目光更少地注视路面,更多地注视与驾驶无关的区域。在向手动驾驶过渡之前,脱离时向非驾驶相关区域的路边扫视比例较高,但并没有通过更长时间的注视来弥补。

应用

该模型可作为安全评估的参考,或用于制定驾驶员管理系统的设计目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验