Ovsyannikov Sergey V, Aslandukova Alena A, Aslandukov Andrey, Chariton Stella, Tsirlin Alexander A, Korobeynikov Igor V, Morozova Natalia V, Fedotenko Timofey, Khandarkhaeva Saiana, Dubrovinsky Leonid
Bayerisches Geoinstitut, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany.
Institute for Solid State Chemistry of Ural Branch of Russian Academy of Sciences, 91 Pervomayskaya Strasse, Yekaterinburg 620219, Russia.
Inorg Chem. 2021 Sep 6;60(17):13440-13452. doi: 10.1021/acs.inorgchem.1c01782. Epub 2021 Aug 16.
We synthesized single crystals of marokite (CaMnO)-type orthorhombic manganese (II,III) oxide, γ-MnO, in a multianvil apparatus at pressures of 10-24 GPa. The magnetic, electronic, and optical properties of the crystals were investigated at ambient pressure. It was found that γ-MnO is a semiconductor with an indirect band gap of 0.96 eV and two antiferromagnetic transitions () at ∼200 and ∼55 K. The phase stability of the γ-MnO crystals was examined in the pressure range of 0-60 GPa using single-crystal X-ray diffraction and Raman spectroscopy. A bulk modulus of γ-MnO was determined to be = 235.3(2) GPa with ' = 2.6(6). The γ-MnO phase persisted over the whole pressure range studied and did not transform or decompose upon laser heating of the sample to ∼3500 K at 60 GPa. This result seems surprising, given the high-pressure structural diversity of iron oxides with similar stoichiometries. With an increase in pressure, the degree of distortion of MnO polyhedra decreased. Furthermore, there are signs indicating a limited charge transfer between the Mn ions in the octahedra and the Mn ions in the trigonal prisms. Our results demonstrate that the high-pressure behavior of the structural, electronic, and chemical properties of manganese oxides strongly differs from that of iron oxides with similar stoichiometries.
我们在多砧装置中于10 - 24吉帕的压力下合成了钙锰矿(CaMnO)型正交晶系锰(II,III)氧化物γ-MnO的单晶。在常压下对晶体的磁性、电学和光学性质进行了研究。发现γ-MnO是一种间接带隙为0.96电子伏特的半导体,并且在约200 K和约55 K处有两个反铁磁转变()。使用单晶X射线衍射和拉曼光谱在0 - 60吉帕的压力范围内研究了γ-MnO晶体的相稳定性。确定γ-MnO的体模量为 = 235.3(2)吉帕,' = 2.6(6)。γ-MnO相在所研究的整个压力范围内都保持稳定,并且在60吉帕下将样品激光加热至约3500 K时也不会转变或分解。考虑到具有相似化学计量比的铁氧化物的高压结构多样性,这一结果似乎令人惊讶。随着压力增加,MnO多面体的畸变程度降低。此外,有迹象表明八面体中的Mn离子与三角棱柱中的Mn离子之间存在有限的电荷转移。我们的结果表明,具有相似化学计量比的锰氧化物的结构、电子和化学性质的高压行为与铁氧化物的高压行为有很大不同。