Suppr超能文献

天然矿物钨铁矿(FeWO)的电子、振动和结构性质:高压研究

Electronic, Vibrational, and Structural Properties of the Natural Mineral Ferberite (FeWO): A High-Pressure Study.

作者信息

Diaz-Anichtchenko Daniel, Aviles-Coronado Jesus E, López-Moreno Sinhué, Turnbull Robin, Manjón Francisco J, Popescu Catalin, Errandonea Daniel

机构信息

Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain.

División de Materiales Avanzados, IPICYT, Camino a la Presa de San José 2055 Col. Lomas 4a sección, San Luis Potosi 78216, Mexico.

出版信息

Inorg Chem. 2024 Apr 15;63(15):6898-6908. doi: 10.1021/acs.inorgchem.4c00345. Epub 2024 Mar 30.

Abstract

This paper reports an experimental high-pressure study of natural mineral ferberite (FeWO) up to 20 GPa using diamond-anvil cells. First-principles calculations have been used to support and complement the results of the experimental techniques. X-ray diffraction patterns show that FeWO crystallizes in the wolframite structure at ambient pressure and is stable over a wide pressure range, as is the case for other wolframite AWO (A = Mg, Mn, Co, Ni, Zn, or Cd) compounds. No structural phase transitions were observed for FeWO, in the pressure range investigated. The bulk modulus ( = 136(3) GPa) obtained from the equation of state is very close to the recently reported value for CoWO (131(3) GPa). According to our optical absorption measurements, FeWO has an indirect band gap that decreases from 2.00(5) eV at ambient pressure to 1.56(5) eV at 16 GPa. First-principles simulations yield three infrared-active phonons, which soften with pressure, in contrast to the Raman-active phonons. These results agree with Raman spectroscopy experiments on FeWO and are similar to those previously reported for MgWO. Our results on FeWO are also compared to previous results on other wolframite-type compounds.

摘要

本文报道了利用金刚石对顶砧对天然矿物钨铁矿(FeWO)进行的高达20 GPa的高压实验研究。第一性原理计算用于支持和补充实验技术的结果。X射线衍射图谱表明,FeWO在常压下结晶为黑钨矿结构,并且在很宽的压力范围内稳定,其他黑钨矿型AWO(A = Mg、Mn、Co、Ni、Zn或Cd)化合物也是如此。在所研究的压力范围内,未观察到FeWO发生结构相变。由状态方程得到的体模量( = 136(3) GPa)与最近报道的CoWO的数值(131(3) GPa)非常接近。根据我们的光吸收测量结果,FeWO具有间接带隙,其在常压下为2.00(5) eV,在16 GPa时降至1.56(5) eV。第一性原理模拟产生了三个红外活性声子,与拉曼活性声子相反,它们随压力软化。这些结果与FeWO的拉曼光谱实验结果一致,并且与先前报道的MgWO的结果相似。我们关于FeWO的结果也与其他黑钨矿型化合物的先前结果进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2926/11022173/583176ac0ad3/ic4c00345_0001.jpg

相似文献

1
Electronic, Vibrational, and Structural Properties of the Natural Mineral Ferberite (FeWO): A High-Pressure Study.
Inorg Chem. 2024 Apr 15;63(15):6898-6908. doi: 10.1021/acs.inorgchem.4c00345. Epub 2024 Mar 30.
2
High-pressure characterization of multifunctional CrVO.
J Phys Condens Matter. 2020 Jun 19;32(38). doi: 10.1088/1361-648X/ab9408.
3
High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4.
Inorg Chem. 2016 May 16;55(10):4958-69. doi: 10.1021/acs.inorgchem.6b00503. Epub 2016 Apr 29.
4
Stability of FeVO under Pressure: An X-ray Diffraction and First-Principles Study.
Inorg Chem. 2018 Jul 2;57(13):7860-7876. doi: 10.1021/acs.inorgchem.8b00984. Epub 2018 Jun 13.
5
Metal-to-metal charge transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu, or Zn) compounds with the wolframite structure.
Inorg Chem. 2014 May 5;53(9):4394-9. doi: 10.1021/ic4031798. Epub 2014 Apr 22.
6
Pressure-Driven Metallization in Hafnium Diselenide.
Inorg Chem. 2021 Feb 1;60(3):1746-1754. doi: 10.1021/acs.inorgchem.0c03223. Epub 2021 Jan 15.
7
Structural Stability and Properties of Marokite-Type γ-MnO.
Inorg Chem. 2021 Sep 6;60(17):13440-13452. doi: 10.1021/acs.inorgchem.1c01782. Epub 2021 Aug 16.
8
Pressure-Driven Isostructural Phase Transition in InNbO: In Situ Experimental and Theoretical Investigations.
Inorg Chem. 2017 May 1;56(9):5420-5430. doi: 10.1021/acs.inorgchem.7b00437. Epub 2017 Apr 19.
9
Pressure-induced phase transitions and electronic properties of CdVO.
RSC Adv. 2022 May 16;12(23):14827-14837. doi: 10.1039/d2ra01717b. eCollection 2022 May 12.

本文引用的文献

1
Band-Gap Energy and Electronic Transitions of NiWO Studied under High-Pressure Conditions.
J Phys Chem C Nanomater Interfaces. 2023 Jul 26;127(31):15630-15640. doi: 10.1021/acs.jpcc.3c03512. eCollection 2023 Aug 10.
2
Accurate Determination of the Bandgap Energy of the Rare-Earth Niobate Series.
J Phys Chem Lett. 2023 Feb 23;14(7):1762-1768. doi: 10.1021/acs.jpclett.3c00020. Epub 2023 Feb 10.
3
Identification of M-NH -NH Intermediate and Rate Determining Step for Nitrogen Reduction with Bioinspired Sulfur-Bonded FeW Catalyst.
Angew Chem Int Ed Engl. 2021 Sep 6;60(37):20331-20341. doi: 10.1002/anie.202104918. Epub 2021 Aug 6.
4
Precise Characterization of the Rich Structural Landscape Induced by Pressure in Multifunctional FeVO.
Inorg Chem. 2020 May 4;59(9):6623-6630. doi: 10.1021/acs.inorgchem.0c00772. Epub 2020 Apr 17.
5
Putting the Squeeze on Lead Chromate Nanorods.
J Phys Chem Lett. 2019 Aug 15;10(16):4744-4751. doi: 10.1021/acs.jpclett.9b01978. Epub 2019 Aug 7.
6
Stability of FeVO under Pressure: An X-ray Diffraction and First-Principles Study.
Inorg Chem. 2018 Jul 2;57(13):7860-7876. doi: 10.1021/acs.inorgchem.8b00984. Epub 2018 Jun 13.
7
High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4.
Inorg Chem. 2016 May 16;55(10):4958-69. doi: 10.1021/acs.inorgchem.6b00503. Epub 2016 Apr 29.
8
Pressure induced superconductivity in CaFe2As2.
Phys Rev Lett. 2008 Aug 1;101(5):057006. doi: 10.1103/PhysRevLett.101.057006. Epub 2008 Jul 31.
9
Restoring the density-gradient expansion for exchange in solids and surfaces.
Phys Rev Lett. 2008 Apr 4;100(13):136406. doi: 10.1103/PhysRevLett.100.136406.
10
Ab initio molecular dynamics for liquid metals.
Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561. doi: 10.1103/physrevb.47.558.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验