Suppr超能文献

高盐度膜淡化的高影响力创新。

High-impact innovations for high-salinity membrane desalination.

机构信息

Applied Energy Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.

National Energy Technology Laboratory, Pittsburgh, PA 15236.

出版信息

Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2022196118.

Abstract

Reducing the cost of high-salinity (>75 g/L total dissolved solids) brine concentration technology would unlock the potential for vast inland water supplies and promote the safe management of concentrated aqueous waste streams. Impactful innovation will target component performance improvements and cost reductions that yield the highest impact on system costs, but the desalination community lacks methods for quantitatively evaluating the value of innovation or the robustness of technology platforms relative to competing technologies. This work proposes a suite of methods built on process-based cost optimization models that explicitly address the complexities of membrane-separation processes, namely that these processes comprise dozens of nonlinearly interacting components and that innovation can occur in more than one component at a time. We begin by demonstrating the merit of performing simple parametric sensitivity analysis on component performance and cost to guide the selection of materials and manufacturing methods that reduce system costs. A more rigorous implementation of this approach relates improvements in component performance to increases in component costs, helping to further discern high-impact innovation trajectories. The most advanced implementation includes a stochastic simulation of the value of innovation that accounts for both the expected impact of a component innovation on reducing system costs and the potential for improvements in other components. Finally, we apply these methods to identify innovations with the highest probability of substantially reducing the levelized cost of water from emerging membrane processes for high-salinity brine treatment.

摘要

降低高盐度(总溶解固体 >75 g/L)盐水浓缩技术的成本将释放出内陆大量水资源的潜力,并促进浓盐水的安全管理。有影响力的创新将针对部件性能的提高和成本的降低,以对系统成本产生最大影响,但脱盐界缺乏定量评估创新价值或技术平台相对于竞争技术稳健性的方法。这项工作提出了一系列方法,这些方法建立在基于过程的成本优化模型之上,可以明确解决膜分离过程的复杂性,即这些过程由数十个非线性相互作用的组件组成,并且创新可以同时发生在多个组件中。我们首先通过对部件性能和成本进行简单的参数敏感性分析来证明其优势,以指导选择降低系统成本的材料和制造方法。这种方法的更严格实施将组件性能的提高与组件成本的增加联系起来,有助于进一步识别具有高影响力的创新轨迹。最先进的实施方法包括对创新价值的随机模拟,其中包括组件创新对降低系统成本的预期影响以及其他组件改进的潜力。最后,我们应用这些方法来确定具有降低新兴膜处理高盐度盐水处理水平化成本的最高概率的创新。

相似文献

1
High-impact innovations for high-salinity membrane desalination.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2022196118.
2
Component innovations for lower cost mechanical vapor compression.
Water Res. 2024 Aug 15;260:121950. doi: 10.1016/j.watres.2024.121950. Epub 2024 Jun 17.
3
An overview of brine management: Emerging desalination technologies, life cycle assessment, and metal recovery methodologies.
J Environ Manage. 2021 Jun 15;288:112358. doi: 10.1016/j.jenvman.2021.112358. Epub 2021 Mar 23.
5
Cost Optimization of Osmotically Assisted Reverse Osmosis.
Environ Sci Technol. 2018 Oct 16;52(20):11813-11821. doi: 10.1021/acs.est.8b02771. Epub 2018 Oct 3.
6
Reverse osmosis desalination: water sources, technology, and today's challenges.
Water Res. 2009 May;43(9):2317-48. doi: 10.1016/j.watres.2009.03.010. Epub 2009 Mar 18.
7
Modeling Framework for Cost Optimization of Process-Scale Desalination Systems with Mineral Scaling and Precipitation.
ACS ES T Eng. 2024 Mar 8;4(5):1028-1047. doi: 10.1021/acsestengg.3c00537. eCollection 2024 May 10.
10
Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.
Environ Sci Technol. 2016 Nov 15;50(22):12072-12094. doi: 10.1021/acs.est.6b03448. Epub 2016 Nov 1.

引用本文的文献

1
Ultrahigh pressure compaction-resistant thin film crosslinked composite reverse osmosis membranes.
Nat Commun. 2025 Sep 1;16(1):8165. doi: 10.1038/s41467-025-63639-0.
2
Modeling Framework for Cost Optimization of Process-Scale Desalination Systems with Mineral Scaling and Precipitation.
ACS ES T Eng. 2024 Mar 8;4(5):1028-1047. doi: 10.1021/acsestengg.3c00537. eCollection 2024 May 10.

本文引用的文献

1
Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes.
Water Res. 2020 Mar 1;170:115317. doi: 10.1016/j.watres.2019.115317. Epub 2019 Nov 20.
2
Cost Optimization of Osmotically Assisted Reverse Osmosis.
Environ Sci Technol. 2018 Oct 16;52(20):11813-11821. doi: 10.1021/acs.est.8b02771. Epub 2018 Oct 3.
3
Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.
Environ Sci Technol. 2018 Feb 20;52(4):2242-2250. doi: 10.1021/acs.est.7b05774. Epub 2018 Feb 7.
4
The future of seawater desalination: energy, technology, and the environment.
Science. 2011 Aug 5;333(6043):712-7. doi: 10.1126/science.1200488.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验