Ali Hager R, Motawea Eman A
Spectroscopic Division, Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727 Cairo, Egypt.
ACS Omega. 2021 Aug 17;6(34):22047-22064. doi: 10.1021/acsomega.1c02644. eCollection 2021 Aug 31.
The degradation of environmental contaminants with photocatalysts has bright prospects for application in the control of pollution. In this study, BiOBr/ZnO/WO heterojunctions have been documented to be reliable visible-light photocatalysts for phenol deterioration. X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoluminescence spectral analysis, electrochemical impedance spectroscopy (EIS), EIS Bode plots, linear sweep voltammetry, and UV-visible diffuse reflectance spectroscopy were employed to describe the heterojunction's structure in addition to its optical features. The results revealed that the BiOBr/ZnO/WO ternary photocatalyst displayed more degradation activity in comparison to single-phase ZnO, WO, or BiOBr, which is also higher than that of binary mixture photocatalysts with a phenol degradation efficiency of 90%. The influence of degradation variables, for instance, the potential of hydrogen (pH) and the initial organic contaminant content besides the heterojunction dose, on the deterioration efficiency was optimized using the response surface methodology. The degradation efficiency reached 95% under the optimal conditions of 0.08 g/0.03 L catalyst dose, a pH of 9, and an initial organic contaminant content of 10 mg L. However, the optimal phenol degradation efficiency of 39.37 mg g was achieved under the conditions of 0.08 g/0.03 L catalyst dose, pH of 9, and 200 mg L initial phenol concentration.
利用光催化剂降解环境污染物在污染控制方面具有广阔的应用前景。在本研究中,BiOBr/ZnO/WO异质结已被证明是用于苯酚降解的可靠可见光光催化剂。除了其光学特性外,还采用X射线衍射、X射线光电子能谱、傅里叶变换红外光谱、扫描电子显微镜、透射电子显微镜、光致发光光谱分析、电化学阻抗谱(EIS)、EIS波特图、线性扫描伏安法和紫外-可见漫反射光谱来描述异质结的结构。结果表明,与单相ZnO、WO或BiOBr相比,BiOBr/ZnO/WO三元光催化剂表现出更高的降解活性,其苯酚降解效率为90%,也高于二元混合光催化剂。利用响应面法优化了降解变量,如酸碱度(pH)、初始有机污染物含量以及异质结剂量对降解效率的影响。在催化剂剂量为0.08 g/0.03 L、pH为9、初始有机污染物含量为10 mg/L的最佳条件下,降解效率达到95%。然而,在催化剂剂量为0.08 g/0.03 L、pH为9、初始苯酚浓度为200 mg/L的条件下,实现了39.37 mg/g的最佳苯酚降解效率。