Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; School of Material and Chemical Engineering, Tongren University, Tongren, 554300, China.
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
J Colloid Interface Sci. 2022 Jan 15;606(Pt 2):1509-1523. doi: 10.1016/j.jcis.2021.08.108. Epub 2021 Aug 19.
Designing recyclable photocatalysts with high activity and stability has drawn considerable attention in the fields of sewage treatment. Herein, a series of heterojunctions constructed by zirconium-based metal-organic frameworks (UiO-66-NH) and tungsten trioxide (WO) is immobilized on carbon cloth via a facile solvothermal method, resulting in highly recyclable photocatalysts. Multiple characterization techniques, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, verify the successful synthesis of UiO-66-NH nanospheres on the surface of needlelike WO modified carbon cloth. Results show that the optimal heterojunction photocatalyst exhibits excellent photocatalytic degradation efficiency for the removal of tetracycline (TC) from water, for which nearly 100% of TC is degraded within 60 min under visible light. Trapping experiments and electron spin resonance (ESR) spectra analyses demonstrate that the superoxide radicals O and photogenerated hole h play a dominant role in the degradation process. Excellent photocatalytic activity is dominantly attributed to the effective separation of photoinduced carriers in this type-Ⅱ heterostructure system. Moreover, the possible photocatalytic oxidation degradation pathway is confirmed by analyzing intermediates using liquid chromatography mass spectrometry (LC-MS). This study offers a highly efficient strategy to design recyclable heterojunction photocatalysts for the degradation of refractory antibiotics in sewage.
设计具有高活性和稳定性的可回收光催化剂在污水处理领域引起了相当大的关注。在此,通过简便的溶剂热法将一系列由锆基金属有机骨架(UiO-66-NH)和三氧化钨(WO)构建的异质结固定在碳布上,得到了可高度回收的光催化剂。多种表征技术,如 X 射线衍射、扫描电子显微镜、透射电子显微镜、X 射线光电子能谱和傅里叶变换红外光谱,验证了 UiO-66-NH 纳米球成功地合成在针状 WO 修饰碳布的表面上。结果表明,最佳的异质结光催化剂对水中四环素(TC)的去除具有优异的光催化降解效率,在可见光下,几乎 100%的 TC 在 60 分钟内被降解。捕获实验和电子自旋共振(ESR)谱分析表明,超氧自由基 O 和光生空穴 h 在降解过程中起主导作用。这种类型的 II 型异质结构体系中光致载流子的有效分离是其具有优异光催化活性的主要原因。此外,通过使用液相色谱质谱联用仪(LC-MS)分析中间体,确认了可能的光催化氧化降解途径。本研究为设计用于降解污水中难处理抗生素的可回收异质结光催化剂提供了一种高效策略。