Juhart Joachim, Autischer Michael, Sakoparnig Marlene, Krüger Markus
Institute of Technology and Testing of Construction Materials, Graz University of Technology, 8010 Graz, Austria.
Materials (Basel). 2021 Aug 31;14(17):4958. doi: 10.3390/ma14174958.
In times of climate change, the reduction in embodied greenhouse gas emissions is a premise for sustainable concrete infrastructure. As Portland cement clinker is mainly responsible for the high CO emissions of concrete, its reduction is necessary. In order to be sustainable, the concrete must meet processing, mechanical and durability properties while taking cost aspects into account. The paper presents (i) the "micro-filler/eco-filler concept" for achieving a clinker reduced, optimised binder and (ii) a performance-based approach to put sustainable "Eco-concrete" into practice. Clinker is substituted by locally available inert fillers by at least two different particle size fractions and supplementary cementitious materials. The method is based on particle packing optimisation, reduction in water demand and optimisation of the mix ratio of the binder blend, which allows the performance requirements to be met. The new Eco-concretes deliver the desired performance in terms of processability, strength and durability (water penetration, frost, carbonation and chloride resistance) while lowering the environmental impact in comparison to standard concrete. One of the new mixes was used for a small animal passage tunnel. The direct comparison of the developed Eco-concrete and standard concrete showed a 24% reduction in CO, while achieving satisfactory workability, stripping strength and durability performance.
在气候变化的时代,降低混凝土基础设施的隐含温室气体排放是其可持续发展的前提。由于波特兰水泥熟料是混凝土高二氧化碳排放的主要原因,因此有必要减少其用量。为了实现可持续发展,混凝土必须在考虑成本因素的同时满足加工性能、力学性能和耐久性要求。本文提出了(i)实现熟料减量、优化胶凝材料的“微填料/生态填料概念”,以及(ii)基于性能的方法来将可持续的“生态混凝土”付诸实践。通过至少两种不同粒径级配的当地可用惰性填料和辅助胶凝材料替代熟料。该方法基于颗粒堆积优化、需水量降低以及胶凝材料混合物配合比优化,从而能够满足性能要求。新型生态混凝土在可加工性、强度和耐久性(抗水渗透、抗冻、抗碳化和抗氯化物)方面达到了预期性能,同时与标准混凝土相比降低了环境影响。其中一种新型混合料被用于一条小动物通道隧道。对研发的生态混凝土和标准混凝土的直接比较表明,二氧化碳排放量降低了24%,同时实现了令人满意的工作性、脱模强度和耐久性性能。