Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel.
Int J Mol Sci. 2021 Aug 25;22(17):9172. doi: 10.3390/ijms22179172.
The formation of amyloid-like structures by metabolites is associated with several inborn errors of metabolism (IEMs). These structures display most of the biological, chemical and physical properties of protein amyloids. However, the molecular interactions underlying the assembly remain elusive, and so far, no modulating therapeutic agents are available for clinical use. Chemical chaperones are known to inhibit protein and peptide amyloid formation and stabilize misfolded enzymes. Here, we provide an in-depth characterization of the inhibitory effect of osmolytes and hydrophobic chemical chaperones on metabolite assemblies, thus extending their functional repertoire. We applied a combined in vivo-in vitro-in silico approach and show their ability to inhibit metabolite amyloid-induced toxicity and reduce cellular amyloid content in yeast. We further used various biophysical techniques demonstrating direct inhibition of adenine self-assembly and alteration of fibril morphology by chemical chaperones. Using a scaffold-based approach, we analyzed the physiochemical properties of various dimethyl sulfoxide derivatives and their role in inhibiting metabolite self-assembly. Lastly, we employed whole-atom molecular dynamics simulations to elucidate the role of hydrogen bonds in osmolyte inhibition. Our results imply a dual mode of action of chemical chaperones as IEMs therapeutics, that could be implemented in the rational design of novel lead-like molecules.
代谢物形成淀粉样样结构与几种先天性代谢错误(IEM)有关。这些结构显示出蛋白质淀粉样的大多数生物学、化学和物理特性。然而,组装所涉及的分子相互作用仍然难以捉摸,到目前为止,还没有可用于临床使用的调节治疗剂。化学伴侣已知可抑制蛋白质和肽淀粉样形成并稳定错误折叠的酶。在这里,我们深入研究了渗透剂和疏水性化学伴侣对代谢物组装的抑制作用,从而扩展了它们的功能范围。我们应用了一种组合的体内-体外-计算方法,并表明它们能够抑制代谢物淀粉样诱导的毒性并减少酵母中的细胞淀粉样含量。我们进一步使用各种生物物理技术证明了化学伴侣对腺嘌呤自组装的直接抑制作用和对纤维形态的改变。使用基于支架的方法,我们分析了各种二甲基亚砜衍生物的物理化学性质及其在抑制代谢物自组装中的作用。最后,我们采用全原子分子动力学模拟来阐明氢键在渗透剂抑制中的作用。我们的结果表明,化学伴侣作为 IEM 治疗剂具有双重作用模式,可用于新型类似物分子的合理设计。