Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Largo B.Pontecorvo 3, I-56127 Pisa, Italy.
Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Largo B.Pontecorvo 3, I-56127 Pisa, Italy.
Int J Mol Sci. 2021 Sep 3;22(17):9577. doi: 10.3390/ijms22179577.
The relaxation properties of viscous liquids close to their glass transition (GT) have been widely characterised by the statistical tool of time correlation functions. However, the strong influence of ubiquitous non-linearities calls for new, alternative tools of analysis. In this respect, information theory-based observables and, more specifically, mutual information (MI) are gaining increasing interest. Here, we report on novel, deeper insight provided by MI-based analysis of molecular dynamics simulations of molecular and macromolecular glass-formers on two distinct aspects of transport and relaxation close to GT, namely dynamical heterogeneity (DH) and secondary Johari-Goldstein (JG) relaxation processes. In a model molecular liquid with significant DH, MI reveals two populations of particles organised in clusters having either filamentous or compact globular structures that exhibit different mobility and relaxation properties. In a model polymer melt, MI provides clearer evidence of JG secondary relaxation and sharper insight into its DH. It is found that both DH and MI between the orientation and the displacement of the bonds reach (local) maxima at the time scales of the primary and JG secondary relaxation. This suggests that, in (macro)molecular systems, the mechanistic explanation of both DH and relaxation must involve rotation/translation coupling.
靠近玻璃化转变(GT)时粘性液体的弛豫特性已被广泛用时间相关函数的统计工具进行了描述。然而,普遍存在的非线性的强烈影响需要新的、替代的分析工具。在这方面,基于信息论的可观察量,特别是互信息(MI),正受到越来越多的关注。在这里,我们报告了 MI 分析在分子动力学模拟中提供的关于接近 GT 的输运和弛豫的两个不同方面的新的、更深入的见解,即动力学异质性(DH)和次级 Johari-Goldstein(JG)弛豫过程。在具有显著 DH 的模型分子液体中,MI 揭示了两种粒子群,它们以丝状或紧凑的球状结构组织在一起,表现出不同的流动性和弛豫性质。在模型聚合物熔体中,MI 提供了更清晰的 JG 次级松弛的证据,并对其 DH 有了更深入的了解。发现键的取向和位移之间的 DH 和 MI 都在主弛豫和 JG 次级弛豫的时间尺度上达到(局部)最大值。这表明,在(大)分子体系中,DH 和弛豫的机械解释必须涉及旋转/平移耦合。