Jheng Li-Cheng, Cheng Cheng-Wei, Ho Ko-Shan, Hsu Steve Lien-Chung, Hsu Chung-Yen, Lin Bi-Yun, Ho Tsung-Han
Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
Polymers (Basel). 2021 Aug 26;13(17):2864. doi: 10.3390/polym13172864.
A quaternized polybenzimidazole (PBI) membrane was synthesized by grafting a dimethylimidazolium end-capped side chain onto PBI. The organic-inorganic hybrid membrane of the quaternized PBI was prepared via a silane-induced crosslinking process with triethoxysilylpropyl dimethylimidazolium chloride. The chemical structure and membrane morphology were characterized using NMR, FTIR, TGA, SEM, EDX, AFM, SAXS, and XPS techniques. Compared with the pristine membrane of dimethylimidazolium-functionalized PBI, its hybrid membrane exhibited a lower swelling ratio, higher mechanical strength, and better oxidative stability. However, the morphology of hydrophilic/hydrophobic phase separation, which facilitates the ion transport along hydrophilic channels, only successfully developed in the pristine membrane. As a result, the hydroxide conductivity of the pristine membrane (5.02 × 10 S cm at 80 °C) was measured higher than that of the hybrid membrane (2.22 × 10 S cm at 80 °C). The hydroxide conductivity and tensile results suggested that both membranes had good alkaline stability in 2M KOH solution at 80 °C. Furthermore, the maximum power densities of the pristine and hybrid membranes of dimethylimidazolium-functionalized PBI reached 241 mW cm and 152 mW cm at 60 °C, respectively. The fuel cell performance result demonstrates that these two membranes are promising as AEMs for fuel cell applications.
通过将端基为二甲基咪唑鎓的侧链接枝到聚苯并咪唑(PBI)上,合成了一种季铵化的聚苯并咪唑(PBI)膜。通过硅烷诱导的交联过程,用三乙氧基甲硅烷基丙基二甲基氯化铵制备了季铵化PBI的有机 - 无机杂化膜。使用核磁共振(NMR)、傅里叶变换红外光谱(FTIR)、热重分析(TGA)、扫描电子显微镜(SEM)、能谱分析(EDX)、原子力显微镜(AFM)、小角X射线散射(SAXS)和X射线光电子能谱(XPS)技术对化学结构和膜形态进行了表征。与二甲基咪唑功能化PBI的原始膜相比,其杂化膜表现出更低的溶胀率、更高的机械强度和更好的氧化稳定性。然而,有利于离子沿亲水通道传输的亲水/疏水相分离形态仅在原始膜中成功形成。结果,测得原始膜在80°C时的氢氧根离子电导率(5.02×10 S cm)高于杂化膜(80°C时为2.22×10 S cm)。氢氧根离子电导率和拉伸结果表明,两种膜在80°C下的2M KOH溶液中均具有良好的碱性稳定性。此外,二甲基咪唑功能化PBI的原始膜和杂化膜在60°C时的最大功率密度分别达到241 mW cm和152 mW cm。燃料电池性能结果表明,这两种膜有望作为用于燃料电池应用的阴离子交换膜(AEM)。
需注意原文中部分电导率数值处单位不完整,可能影响准确理解,但按要求未做修改。